Patents Assigned to Pacific Biosciences of California
  • Patent number: 10859497
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices include an integrated diffractive beam shaping element that provides for the spatial separation of light emitted from the optical reactions.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Annette Grot, Ravi Saxena, Paul Lundquist
  • Patent number: 10858651
    Abstract: Methods are provided for reducing the complexity of a population of nucleic acids prior to performing an analysis of the nucleic acids, e.g., sequence analysis. The methods result in a subset of the initial population enriched for a target region, which is typically located within one or more target fragments. The methods are particularly useful for analyzing populations having a high degree of complexity, e.g., chromosomal-derived DNA, whole genomic DNA, or mRNA populations.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: December 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Yu-Chih Tsai, Igor Vilfan, Khai Luong
  • Patent number: 10815465
    Abstract: Provided are compositions comprising recombinant DNA polymerases that include amino acid substitutions, insertions, deletions, and/or exogenous features that confer modified properties upon the polymerase for enhanced single molecule sequencing. Such properties include increased resistance to photodamage, and can also include enhanced metal ion coordination, reduced exonuclease activity, reduced reaction rates at one or more steps of the polymerase kinetic cycle, decreased branching fraction, altered cofactor selectivity, increased yield, increased thermostability, increased accuracy, increased speed, increased readlength, and the like. Also provided are nucleic acids which encode the polymerases with the aforementioned phenotypes, as well as methods of using such polymerases to make a DNA or to sequence a DNA template.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: October 27, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Arek Bibillo, Keith Bjornson, Fred Christians, Colleen Cutcliffe, Jeremiah Hanes, Lei Jia, Walter Lee, Erik Miller, Pranav Patel
  • Patent number: 10814299
    Abstract: Methods, compositions, and systems for distributing nucleic acids into array regions are provided. The methods, compositions, and systems utilize nucleic acid condensing agents to increase efficiency of distribution of the nucleic acids into the array regions. Various methods for facilitating distribution of the nucleic acids to the array regions are provided.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 27, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Lei Sun, Jaime Juan Benitez-Marzan, Natasha Popovich, Sassan Sheikholeslami, Steven Lin, Aparna Vedula
  • Patent number: 10800805
    Abstract: Protected fluorescent reagent compounds and their methods of synthesis are provided. The compounds are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The compounds contain fluorescent dye elements, that allow the compounds to be detected with high sensitivity at desirable wavelengths, binding elements, that allow the compounds to be recognized specifically by target biomolecules, and protective shield elements, that decrease undesirable contacts between the fluorescent dye elements and the bound target biomolecules and that therefore decrease photodamage of the bound target biomolecules by the fluorescent dye elements.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: October 13, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Lubomir Sebo, Jeremiah Hanes, Gene Shen, Louis Brogley, Stephen Yue, Frank Zheng, Yuri Lapin, John Lyle, Honey Osuna, Andrei Fedorov
  • Patent number: 10793903
    Abstract: Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: October 6, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Benjamin Flusberg, Stephen Turner, Jon Sorenson, Kevin Travers, Cheryl Heiner
  • Patent number: 10787573
    Abstract: Multimeric protected fluorescent reagents and their methods of synthesis are provided. The reagents are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The reagents contain fluorescent dye elements, that allow the compounds to be detected with high sensitivity at desirable wavelengths, binding elements, that allow the compounds to be recognized specifically by target biomolecules, and protective shield elements, that decrease undesirable contacts between the fluorescent dye elements and the bound target biomolecules and that therefore decrease photodamage of the bound target biomolecules by the fluorescent dye elements. The reagents also contain coupling elements connect monomeric compounds into multimeric forms, thereby increasing brightness.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: September 29, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Frank Zheng, Jeremiah Hanes, Gene Shen, Louis Brogley, Stephen Yue, Yuri Lapin, John Lyle, Honey Osuna, Andrei Fedorov, Lubomir Sebo
  • Publication number: 20200299319
    Abstract: Labeled nucleotide analogs comprising at least one avidin protein, at least one dye-labeled compound, and at least one nucleotide compound are provided. The analogs are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The analogs are detectable with high sensitivity at desirable wavelengths. They contain structural components that modulate the interactions of the analogs with DNA polymerase, thus decreasing photodamage and improving the kinetic and other properties of the analogs in sequencing reactions. Also provided are nucleotide and dye-labeled compounds of the subject analogs, as well as intermediates useful in the preparation of the compounds and analogs. Compositions comprising the compounds, methods of synthesis of the intermediates, compounds, and analogs, and mutant DNA polymerases are also provided.
    Type: Application
    Filed: January 31, 2020
    Publication date: September 24, 2020
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Lubomir SEBO, Honey OSUNA, Stephen YUE, Yuri LAPIN
  • Patent number: 10783984
    Abstract: Exemplary embodiments provide methods and systems for diploid genome assembly and haplotype sequence reconstruction. Aspects of the exemplary embodiment include generating a fused assembly graph from reads of both haplotypes, the fused assembly graph including identified primary contigs and associated contigs; generating haplotype-specific assembly graphs using phased reads and haplotype aware overlapping of the phased reads; merging the fused assembly graph and haplotype-specific assembly graphs to generate a merged assembly haplotype graph; removing cross-phasing edges from the merged assembly haplotype graph to generate a final haplotype-resolved assembly graph; and reconstructing haplotype-specific contigs from the final haplotype-resolved assembly graph resulting in haplotype-specific contigs.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: September 22, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Chen-Shan Chin, Paul Peluso, David Rank
  • Patent number: 10781483
    Abstract: Labeled nucleotide analogs comprising at least one avidin protein, at least one dye-labeled compound, and at least one nucleotide compound are provided. The analogs are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The analogs are detectable with high sensitivity at desirable wavelengths. They contain structural components that modulate the interactions of the analogs with DNA polymerase, thus decreasing photodamage and improving the kinetic and other properties of the analogs in sequencing reactions. Also provided are nucleotide and dye-labeled compounds of the subject analogs, as well as intermediates useful in the preparation of the compounds and analogs. Compositions comprising the compounds, methods of synthesis of the intermediates, compounds, and analogs, and mutant DNA polymerases are also provided.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: September 22, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Lubomir Sebo, Gene Shen, Stephen Yue, Honey Osuna, Yuri Lapin, Louis Brogley, Andrei Fedorov
  • Patent number: 10777301
    Abstract: The present invention is generally directed to a hierarchical genome assembly process for producing high-quality de novo genome assemblies. The method utilizes a single, long-insert, shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT®) DNA sequencing, and obviates the need for additional sample preparation and sequencing data sets required for previously described hybrid assembly strategies. Efficient de novo assembly from genomic DNA to a finished genome sequence is demonstrated for several microorganisms using as little as three SMRT® cells, and for bacterial artificial chromosomes (BACs) using sequencing data from just one SMRT® Cell. Part of this new assembly workflow is a new consensus algorithm which takes advantage of SMRT® sequencing primary quality values, to produce a highly accurate de novo genome sequence, exceeding 99.999% (QV 50) accuracy.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 15, 2020
    Assignee: Pacific Biosciences for California, Inc.
    Inventors: Chen-Shan Chin, Patrick Marks, David Alexander, Aaron Klammer, Stephen W Turner
  • Patent number: 10768362
    Abstract: Arrays of integrated analytical devices and their methods for production are provided. The arrays are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The integrated devices allow the highly sensitive discrimination of optical signals using features such as spectra, amplitude, and time resolution, or combinations thereof. The arrays and methods of the invention make use of silicon chip fabrication and manufacturing techniques developed for the electronics industry and highly suited for miniaturization and high throughput.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: September 8, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Ravi Saxena, Michael Tzu Ru, Takashi Whitney Orimoto, Annette Grot, Mathieu Foquet, Hou-Pu Chou
  • Patent number: 10745750
    Abstract: Nucleic acid compositions, methods of making and using such compositions that comprise modular functional groups that can be configured to provide desired functionality to different nucleotide types through a swappable and preferably non-covalent linkage component. Such compositions are useful in a variety of applications including nucleic acid analyses.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: August 18, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Jeffrey Wegener
  • Patent number: 10731211
    Abstract: The present disclosure provides methods, compositions, and systems for distributing polymerase compositions into array regions. In particular, the described methods, compositions, and systems utilize density differentials and/or additives to increase efficiency in the distribution of polymerase compositions to a surface as compared to methods utilizing only diffusion control.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: August 4, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Sassan Sheikholeslami, Michael Hunkapiller, Natasha Popovich, Lei Sun, Erik Miller, Satwik Kamtekar
  • Patent number: 10724090
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: July 28, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Patent number: 10717968
    Abstract: Compositions that include polymerases with features for improving entry of nucleotide analogues into active site regions and for coordinating with the nucleotide analogues in the active site region are provided. Methods of making the polymerases and of using the polymerases in sequencing and DNA replication and amplification as well as kinetic models of polymerase activity and computer-implemented methods of using the models are also provided.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 21, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: David R. Rank, Paul S. Peluso, David K. Hanzel, Geoff Otto, Thang Pham, Fred Christians, Arekadiusz Bibillo, Insil Park, Sonya Clark, John Lyle
  • Patent number: 10711300
    Abstract: The present invention provides methods, compositions, and systems for distributing molecules and complexes into reaction sites. In particular, the methods, compositions, and systems of the present invention result in an active loading of molecules and complexes into reaction sites with improved efficiency over loading by passive diffusion methods alone.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: July 14, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Satwik Kamtekar, Keith Bjornson, Leewin Chern, Steven Lin
  • Publication number: 20200208215
    Abstract: Optical analytical devices and their methods of use are provided. The devices are useful in the analysis of highly multiplexed optical reactions in large numbers at high densities, including biochemical reactions, such as nucleic acid sequencing reactions. The devices include integrated illumination elements and optical waveguides for illumination of the optical reactions. The devices further provide for the efficient coupling of optical excitation energy from the waveguides to the optical reactions. Optical signals emitted from the reactions can thus be measured with high sensitivity and discrimination using features such as spectra, amplitude, and time resolution, or combinations thereof. The devices of the invention are well suited for miniaturization and high throughput.
    Type: Application
    Filed: February 24, 2020
    Publication date: July 2, 2020
    Applicant: Pacific Biosciences of California, Inc.
    Inventors: Paul LUNDQUIST, Stephen TURNER
  • Patent number: 10697012
    Abstract: This invention provides substrates for use in various applications, including single-molecule analytical reactions. Methods for propagating optical energy within a substrate are provided. Devices comprising waveguide substrates and dielectric omnidirectional reflectors are provided. Waveguide substrates with improved uniformity of optical energy intensity across one or more waveguides and enhanced waveguide illumination efficiency within an analytic detection region of the arrays are provided.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: June 30, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Cheng Frank Zhong, Paul Lundquist, Mathieu Foquet, Jonas Korlach, Hovig Bayandorian
  • Patent number: 10676788
    Abstract: Labeled nucleotide analogs comprising at least one avidin protein, at least one dye-labeled compound, and at least one nucleotide compound are provided. The analogs are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The analogs are detectable with high sensitivity at desirable wavelengths. They contain structural components that modulate the interactions of the analogs with DNA polymerase, thus decreasing photodamage and improving the kinetic and other properties of the analogs in sequencing reactions. Also provided are nucleotide and dye-labeled compounds of the subject analogs, as well as intermediates useful in the preparation of the compounds and analogs. Compositions comprising the compounds, methods of synthesis of the intermediates, compounds, and analogs, and mutant DNA polymerases are also provided.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: June 9, 2020
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Gene Shen, Stephen Yue, Lubomir Sebo, Louis Brogley