Patents Assigned to Palmaz Scientific, Inc.
  • Publication number: 20140194974
    Abstract: An implantable medical device having enhanced endothelial migration features, generally comprises: a structural member including a leading edge and a trailing edge interconnected by a third surface region, the leading edge including a second surface region in a generally curvilinear cross-section, and the trailing edge including a fourth surface region in a generally curvilinear cross-section, whereby blood flow over the second surface region generate shear stress at the second surface region without an eddy region in the second surface region.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 10, 2014
    Applicant: Palmaz Scientific, Inc.
    Inventor: Julio C. Palmaz
  • Publication number: 20140155992
    Abstract: A transluminal cardiac valve includes an expandable generally tubular cage including when expanded a generally uniform central region, first and second ends each diametrically constricted relative to the central region, a blood impervious region extending from the first end of the cage to within the generally uniform central region, and an inflatable plunger freely disposed and captured within the cage when inflated.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 5, 2014
    Applicant: Palmaz Scientific, Inc.
    Inventor: Julio C. Palmaz
  • Patent number: 8732935
    Abstract: A metallic or pseudometallic covered stent in which the stent component and the cover component are each fabricated of biocompatible metallic or pseudometallic materials, in which the cover and the stent are joined by at least one juncture at each of a proximal and distal end of the stent and the cover. A method of joining the stent and the cover is also disclosed.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: May 27, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Daniel D. Sims, Jeffrey N. Steinmetz, Conor P. Mullens
  • Patent number: 8728563
    Abstract: A method of manufacturing an endoluminal implantable surface, stent, or graft includes the steps of providing an endoluminal implantable surface, stent, or graft having an inner wall surface, an outer wall surface, and a wall thickness and forming a pattern design into the endoluminal implantable surface, stent, or graft. At least one groove is created in the inner surface of the intravascular stent by applying a laser machining method to the inner surface.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: May 20, 2014
    Assignee: Palmaz Scientific, Inc.
    Inventors: Julio C. Palmaz, Armando Garza
  • Publication number: 20140135888
    Abstract: An intravascular stent have a hybrid pattern is disclosed herein.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: Palmaz Scientific, Inc.
    Inventors: Armando Garza, Julio C. Palmaz
  • Patent number: 8715335
    Abstract: An implantable endoluminal device that is fabricated from materials that present a blood or body fluid and tissue contact surface that has controlled heterogeneities in material constitution. An endoluminal stent-graft and web-stent that is made of an monolithic material deposited into a monolayer and etched into regions of structural members and web regions subtending interstitial regions between the structural members. An endoluminal graft is also provided which is made of a biocompatible metal or metal-like material. The endoluminal stent-graft is characterized by having controlled heterogeneities in the stent material along the blood flow surface of the stent and the method of fabricating the stent using vacuum deposition methods.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: May 6, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Julio C. Palmaz, Christopher T. Boyle, Christopher E. Banas, Roger W. Wiseman, Denes Marton
  • Publication number: 20140109383
    Abstract: The invention relates to methods and apparatus for manufacturing medical devices wherein the medical device has a surface treated to promote the migration of cells onto the surface of the medical device. In particular, the surface of the medical device has at least one topographical feature formed therein.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: Palmaz Scientific, Inc.
    Inventors: Scott CARPENTER, Armando GARZA, Julio C. PALMAZ
  • Patent number: 8697175
    Abstract: The present invention consists of an implantable structural element for in vivo delivery of bioactive active agents to a situs in a body. The implantable structural element may be configured as an implantable prosthesis, such as an endoluminal stent, cardiac valve, osteal implant or the like, which serves a dual function of being prosthetic and a carrier for a bioactive agent. Alternatively, the implantable structural element may simply be an implantable article that serves the single function of acting as a time-release carrier for the bioactive agent.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: April 15, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventor: Christopher T. Boyle
  • Patent number: 8679517
    Abstract: An implantable biocompatible material includes one or more vacuum deposited layers of biocompatible materials deposited upon a biocompatible base material. At least a top most vacuum deposited layer includes a homogeneous molecular pattern of distribution along the surface thereof and comprises a patterned array of geometric physiologically functional features.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: March 25, 2014
    Assignee: Palmaz Scientific, Inc.
    Inventor: Julio C. Palmaz
  • Patent number: 8668818
    Abstract: This invention is directed to a new method of mass-transfer/fabrication of micro-sized features/structures onto the inner diameter (ID) surface of a stent. This new approach is provided by technique of through mask electrical micro-machining. One embodiment discloses an application of electrical micro-machining to the ID of a stent using a customized electrode configured specifically for machining micro-sized features/structures.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 11, 2014
    Assignee: Palmaz Scientific, Inc.
    Inventor: Armando Garza
  • Publication number: 20140067043
    Abstract: An implantable expandable medical device in which selected regions of the device are in a martensite phase and selected regions are in an austenite phase. The martensitic regions exhibit pseudoplastic behavior in vivo and may be deformed without recovery under in vivo body conditions. In contrast the austenitic regions exhibit superelastic behavior in vivo and will recover their pre-programmed configuration upon deformation or release of an applied strain.
    Type: Application
    Filed: September 5, 2013
    Publication date: March 6, 2014
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Christopher E. Banas, Denes Marton
  • Publication number: 20140054258
    Abstract: Methods for manufacturing intravascular stents are disclosed wherein the intravascular stent has its inner surface treated to promote the migration of endothelial cells onto the inner surface of the intravascular stent. In particular, the inner surface of the intravascular stent has at least one groove formed therein.
    Type: Application
    Filed: August 19, 2013
    Publication date: February 27, 2014
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher E. Banas, Julio C. Palmaz, Eugene A. Sprague
  • Publication number: 20140042022
    Abstract: An Inverted Cylindrical Magnetron (ICM) System and Methods of Use is disclosed herein generally comprising a co-axial central anode concentrically located within a first annular end anode and a second annular end anode; a process chamber including a top end and a bottom end in which the first annular end anode and the second annular end anode are coaxially disposed, whereby the first annular end anode, the second annular end anode, and the central anode form a 3-anode configuration to provide electric field uniformity, and the process chamber including a central annular space coupled to a tube insulator disposed about the central annular space wall; a cathode concentrically coupled to the tube insulator and a target; and a plurality of multi-zone electromagnets or hybrid electro-permanent magnets surrounding the exterior of the process chamber providing a tunable magnetic field.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 13, 2014
    Applicant: Palmaz Scientific, Inc.
    Inventors: Tianzong Xu, George Xinsheng Guo, Oanh Nguyen
  • Patent number: 8641754
    Abstract: An endoluminal stent composed of a plurality of first structural elements arrayed to form the circumference of the stent and extending along the longitudinal axis of the stent, and a plurality of second structural elements that interconnect adjacent pairs of first structural elements. The plurality of first structural elements have either a linear shape or a generally sinusoidal configuration with either a regular or irregular periodicity or regions of regular and regions of irregular periodicity between the peaks and troughs of the pattern, with the peaks and troughs projecting from the first structural elements in the circumferential axis. The plurality of second structural elements are generally linear or sinusoidal-shaped members which interconnect an apex of a peak of one of the plurality of first structural elements with an apex of a valley of a second and adjacent one of the plurality of first structural elements.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: February 4, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd. a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Julio C. Palmaz, Christopher E. Banas
  • Patent number: 8632583
    Abstract: An implantable medical device having enhanced endothelial migration features, generally comprises: a structural member including a leading edge and a trailing edge interconnected by a third surface region, the leading edge including a second surface region in a generally curvilinear cross-section, and the trailing edge including a fourth surface region in a generally curvilinear cross-section, whereby blood flow over the second surface region generate shear stress at the second surface region without an eddy region in the second surface region.
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: January 21, 2014
    Assignee: Palmaz Scientific, Inc.
    Inventor: Julio C. Palmaz
  • Patent number: 8617238
    Abstract: A transluminal cardiac valve includes an expandable generally tubular cage including when expanded a generally uniform central region, first and second ends each diametrically constricted relative to the central region, a blood impervious region extending from the first end of the cage to within the generally uniform central region, and an inflatable plunger freely disposed and captured within the cage when inflated.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: December 31, 2013
    Assignee: Palmaz Scientific, Inc.
    Inventor: Julio C. Palmaz
  • Patent number: 8529616
    Abstract: An implantable expandable medical device in which selected regions of the device are in a martensite phase and selected regions are in an austenite phase. The martensitic regions exhibit pseudoplastic behavior in vivo and may be deformed without recovery under in vivo body conditions. In contrast the austenitic regions exhibit superelastic behavior in vivo and will recover their pre-programmed configuration upon deformation or release of an applied strain.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: September 10, 2013
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Christopher T. Banas, Denes Marton
  • Publication number: 20130166018
    Abstract: The implantable structural element for in vivo controlled delivery of bioactive active agents to a situs in a body. The implantable structural element may be configured as an implantable prosthesis, such as an endoluminal stent, cardiac valve, osteal implant or the like, which serves a dual function of being prosthetic and a carrier for a bioactive agent. Control over elution of the bioactive agents occurs through a plurality of cantilever-like cover members which prevent drug elution until an endogenous or exogenous stimulus causes the cover members to open and permit drug elution.
    Type: Application
    Filed: August 20, 2012
    Publication date: June 27, 2013
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Christopher T. Boyle, Steven R. Bailey, Denes Marton, Christopher E. Banas
  • Publication number: 20130153439
    Abstract: This invention is directed to a new method of mass-transfer/fabrication of micro-sized features/structures onto the inner diameter (ID) surface of a stent. This new approach is provided by technique of through mask electrical micro-machining. One embodiment discloses an application of electrical micro-machining to the ID of a stent using a customized electrode configured specifically for machining micro-sized features/structures.
    Type: Application
    Filed: October 30, 2012
    Publication date: June 20, 2013
    Applicant: Palmaz Scientific, Inc.
    Inventor: Palmaz Scientific, Inc.
  • Patent number: 8458879
    Abstract: Implantable medical grafts fabricated of metallic or pseudometallic films of biocompatible materials having a plurality of microperforations passing through the film in a pattern that imparts fabric-like qualities to the graft or permits the geometric deformation of the graft. The implantable graft is preferably fabricated by vacuum deposition of metallic and/or pseudometallic materials into either single or multi-layered structures with the plurality of microperforations either being formed during deposition or after deposition by selective removal of sections of the deposited film. The implantable medical grafts are suitable for use as endoluminal or surgical grafts and may be used as vascular grafts, stent-grafts, skin grafts, shunts, bone grafts, surgical patches, non-vascular conduits, valvular leaflets, filters, occlusion membranes, artificial sphincters, tendons and ligaments.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 11, 2013
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Julio C. Palmaz, Christopher T. Boyle