Patents Assigned to Panasonic Precision Devices Co., Ltd.
  • Patent number: 8824142
    Abstract: Surfaces for electromagnetic shielding, retaining electrostatic charge and indeed collecting ion current in EHD fluid mover designs may be formed as or on surfaces of other components and/or structures in an electronic device. In this way, dimensions may be reduced and packing densities increased. In some cases, electrostatically operative portions of an EHD fluid mover are formed as or on surfaces of an enclosure, an EMI shield, a circuit board and/or a heat pipe or spreader. Depending on the role of these electrostatically operative portions, dielectric, resistive and/or ozone robust or catalytic coatings or conditioning may be applied.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: September 2, 2014
    Assignee: Panasonic Precision Devices Co., Ltd.
    Inventors: Nels Jewell-Larsen, Kenneth A. Honer, Ron Goldman, Matthew K. Schwiebert
  • Patent number: 8804296
    Abstract: Cleaning and/or conditioning electrode surfaces can provide significant performance and operational benefits in EHD devices. In particular, conditioning of emitter electrode surfaces with silver (Ag), silver compositions or silver preparations applied in situ at successive times throughout the operating lifetime of an EHD air mover has been found to significantly reduce ozone production. Structures and techniques are described for in situ conditioning electrode surfaces and, in particular, emitter electrode surfaces of an EHD device such as an air mover or precipitator, with a conditioning material that includes silver.
    Type: Grant
    Filed: September 3, 2012
    Date of Patent: August 12, 2014
    Assignee: Panasonic Precision Devices Co., Ltd.
    Inventors: Kenneth Honer, Guilian Gao, Matthew Schwiebert, Nels Jewell-Larsen
  • Patent number: 8624503
    Abstract: An electrohydrodynamic fluid accelerator includes an emitter electrode and leading surfaces of a collector electrode that are substantially exposed to ion bombardment. Heat transfer surfaces downstream of the emitter electrode along a fluid flow path include a first portion not substantially exposed to the ion bombardment that is conditioned with a first ozone reducing material. The leading surfaces of the collector electrode are not conditioned with the first ozone reducing material, but may include a different surface conditioning. The downstream heat transfer surfaces and the leading surfaces can be separately formed and joined to form the unitary structure or can be integrally formed. The electrohydrodynamic fluid accelerator can be used in a thermal management assembly of an electronic device with a heat dissipating device thermally coupled to the conditioned heat transfer surfaces.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: January 7, 2014
    Assignee: Panasonic Precision Devices Co., Ltd.
    Inventors: Nels Jewell-Larsen, Yan Zhang, Matt Schwiebert, Ken Honer