Abstract: One variation of a system for generating thrust at an aerial vehicle includes: a primary electric motor; a rotor coupled to the motor; an internal-combustion engine; a clutch interposed between the motor and an output shaft of the internal-combustion engine; an engine shroud defining a shroud inlet between the rotor and the internal-combustion engine, extending over the internal-combustion engine, and defining a shroud outlet opposite the rotor; a cooling fan coupled and configured to displace air through the engine shroud; and a local controller configured to receive a rotor speed command specifying a target rotor speed, adjust a throttle setpoint of the internal-combustion engine according to the target rotor speed and a state of charge of a battery in the aerial vehicle, and drive the primary electric motor to selectively output torque to the rotor and to regeneratively brake the rotor according to the target rotor speed.
Type:
Grant
Filed:
September 13, 2021
Date of Patent:
December 24, 2024
Assignee:
Parallel Flight Technologies, Inc.
Inventors:
Joshua Resnick, David Adams, Robert Hulter, Seth McGann, Brian Eiseman
Abstract: A method and apparatus for lifting a payload wherein a first mechanical-rotor is driven by an internal combustion engine. A portion of the mechanical work developed by the internal combustion engine is used to generate electrical power, which is either stored in a battery or used to power an electric motor that drives a second rotor. Thrust developed by the mechanical and electrical rotors is directed downward to provide lift for the payload.
Abstract: One variation of a system for generating thrust at an aerial vehicle includes: a primary electric motor; a rotor coupled to the motor; an internal-combustion engine; a clutch interposed between the motor and an output shaft of the internal-combustion engine; an engine shroud defining a shroud inlet between the rotor and the internal-combustion engine, extending over the internal-combustion engine, and defining a shroud outlet opposite the rotor; a cooling fan coupled and configured to displace air through the engine shroud; and a local controller configured to receive a rotor speed command specifying a target rotor speed, adjust a throttle setpoint of the internal-combustion engine according to the target rotor speed and a state of charge of a battery in the aerial vehicle, and drive the primary electric motor to selectively output torque to the rotor and to regeneratively brake the rotor according to the target rotor speed.
Type:
Grant
Filed:
December 27, 2021
Date of Patent:
January 2, 2024
Assignee:
Parallel Flight Technologies, Inc.
Inventors:
Joshua Resnick, David Adams, Robert Hulter, Seth McGann, Brian Eiseman
Abstract: One variation of a system for generating thrust at an aerial vehicle includes: a primary electric motor; a rotor coupled to the motor; an internal-combustion engine; a clutch interposed between the motor and an output shaft of the internal-combustion engine; an engine shroud defining a shroud inlet between the rotor and the internal-combustion engine, extending over the internal-combustion engine, and defining a shroud outlet opposite the rotor; a cooling fan coupled and configured to displace air through the engine shroud; and a local controller configured to receive a rotor speed command specifying a target rotor speed, adjust a throttle setpoint of the internal-combustion engine according to the target rotor speed and a state of charge of a battery in the aerial vehicle, and drive the primary electric motor to selectively output torque to the rotor and to regeneratively brake the rotor according to the target rotor speed.
Type:
Grant
Filed:
December 28, 2020
Date of Patent:
October 19, 2021
Assignee:
Parallel Flight Technologies, Inc.
Inventors:
Joshua Resnick, David Adams, Robert Hulter, Seth McGann, Brian Eiseman
Abstract: A method and apparatus for lifting a payload wherein a first mechanical-rotor is driven by an internal combustion engine. A portion of the mechanical work developed by the internal combustion engine is used to generate electrical power, which is either stored in a battery or used to power an electric motor that drives a second rotor. Thrust developed by the mechanical and electrical rotors is directed downward to provide lift for the payload.