Patents Assigned to ParkerVision, Inc.
  • Publication number: 20140226768
    Abstract: Methods and apparatuses for reducing DC offsets in a communication system are described. In a first aspect, a feedback loop circuit reduces DC offset in a wireless local area network (WLAN) receiver channel. The frequency response of the feedback loop circuit can be variable. In a second aspect, a circuit provides gain control in a WLAN receiver channel. The stored DC offset is subtracted from the receiver channel. First and second automatic gain control (AGC) amplifiers are coupled in respective portions of the receiver channel. In a third aspect, a feedback loop circuit reduces DC offset in a WLAN receiver channel. The feedback loop circuit includes a storage element that samples and stores receiver channel DC offset. The loop is opened, and the DC offset stored in the storage element is subtracted from the receiver channel. Circuits for monitoring DC offset, and for providing control signals for controlling the frequency response of the DC offset reducing circuits are also provided.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: PARKERVISION, INC.
    Inventors: Gregory S. Rawlins, Kevin Brown, Michael W. Rawlins, David F. Sorrells
  • Publication number: 20140226751
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: PARKERVISION, INC.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8781418
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 15, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20140187184
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: January 6, 2014
    Publication date: July 3, 2014
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8766717
    Abstract: Embodiments of the present invention include a method and system for control of a multiple-input-single output (MISO) device. For example, the method includes determining a change in power output level from a first power output level to a second power output level of the MISO device. The method also includes varying one or more weights associated with respective one or more controls of the MISO device to cause the change in power output. The one or more controls can include one or more of (a) a phase control of one or more input signals to the MISO device, (b) a bias control of the MISO device, and (c) an amplitude control of the input signals to the MISO device.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: July 1, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins
  • Patent number: 8755454
    Abstract: An energy converter based transmitter, a method, a multi-element antenna array are provided for a radio frequency (RF) transmission. For example, the energy converter based transmitter can include a control circuit, a multiple input single output (MISO) operator, and an antenna. The control circuit is configured to receive input information and generate amplitude control signals and phase control signals. The MISO operator is configured to receive the amplitude control signals and the phase control signals and to generate an RF output signal. Further, the antenna is configured to receive and transmit the RF output signal.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: June 17, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory Rawlins
  • Patent number: 8676259
    Abstract: A wireless communications interface couples wireless service to conventional wireline phone appliances. In one embodiment, the wireless communications interface is connected to the phone appliances through existing phone jacks. This allows a user to place and receive calls over a wireless network using the existing wireline infrastructure in a building. By using the invention, users can consolidate their portable and fixed phone service with one of the multiple wireless service providers and bypass the wireline service provider entirely, if so desired. In a second embodiment, the wireless communications interface is directly connected to the phone appliances, bypassing the installed wireline infrastructure. In a third embodiment, both wireline and wireless service are operative, and the wireless communications interface may include logic arbitration to route multiple calls to multiple phone appliances.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: March 18, 2014
    Assignee: ParkerVision, Inc.
    Inventor: Michael J. Bultman
  • Publication number: 20140062574
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 6, 2014
    Applicant: ParkerVision, Inc.
    Inventors: David F. SORRELLS, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8660513
    Abstract: Methods, systems, and apparatuses, and combinations and sub-combinations thereof, for down-converting an electromagnetic (EM) signal are described herein. Briefly stated, in embodiments the invention operates by receiving an EM signal and recursively operating on approximate half cycles (½, 1½, 2½, etc) of the carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a hasehand information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: February 25, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8639196
    Abstract: A circuit is provided comprising detector circuitry, calculating circuitry, and determining circuitry. The detector circuitry is figured to generate an I data signal magnitude value of a sampled I data signal and a Q data signal magnitude value of a sampled Q data signal. The calculating circuitry is configured to calculate a phase shift angle ?I between first and second equal and constant or substantially equal and constant envelope constituents of the sampled I data signal and to calculate a phase shift angle ?Q between first and second substantially equal and substantially constant envelope constituents of the sampled Q data signal. The determining circuitry is configured to determine in-phase and quadrature amplitude information of the substantially equal and substantially constant envelope constituents of the sampled I signal and to determine in-phase and quadrature amplitude information of the first and second substantially equal and substantially constant envelope constituents of the sampled Q signal.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: January 28, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8626093
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 7, 2014
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8594607
    Abstract: Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal are described herein. Such methods, systems, and apparatuses operate by receiving an EM signal and an aliasing signal having an aliasing rate. The EM signal is aliased according to the aliasing signal to down-convert the EM signal. The term aliasing, as used herein, refers to both down-converting an EM signal by under-sampling the EM signal at an aliasing rate, and down-converting an EM signal by transferring energy from the EM signal at the aliasing rate. In an embodiment, the EM signal is down-converted to an intermediate frequency (IF) signal. In another embodiment, the EM signal is down-converted to a emodulated baseband information signal. In another embodiment, the EM signal is a frequency modulated (FM) signal, which is down-converted to a non-FM signal, such as a phase modulated (PM) signal or an amplitude modulated (AM) signal.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 26, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr.
  • Patent number: 8594228
    Abstract: A balanced transmitter up-converts I and Q baseband signals directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the I and Q baseband signals in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains necessary information to reconstruct the I and Q baseband signals. The differential sampling is performed according to control signals that are phase shifted with respect to each other. The control signals may have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: November 26, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C. Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8588725
    Abstract: Methods, systems, and apparatuses for down-converting and up-converting an electromagnetic signal. In embodiments, the invention operates by receiving an electromagnetic signal and recursively operating on approximate half cycles of a carrier signal. The recursive operations can be performed at a sub-harmonic rate of the carrier signal. The invention accumulates the results of the recursive operations and uses the accumulated results to form a down-converted signal. In embodiments, up-conversion is accomplished by controlling a switch with an oscillating signal, the frequency of the oscillating signal being selected as a sub-harmonic of the desired output frequency. When the invention is being used in the frequency modulation or phase modulation implementations, the oscillating signal is modulated by an information signal before it causes the switch to gate a bias signal. The output of the switch is filtered, and the desired harmonic is output.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 19, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8577313
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: November 5, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20130288620
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 31, 2013
    Applicant: ParkerVision, Inc.
    Inventor: ParkerVision, Inc.
  • Patent number: 8571135
    Abstract: A balanced transmitter up-converts a baseband signal directly from baseband-to-RF. The up-conversion process is sufficiently linear that no IF processing is required, even in communications applications that have stringent requirements on spectral growth. In operation, the balanced modulator sub-harmonically samples the baseband signal in a balanced and differential manner, resulting in harmonically rich signal. The harmonically rich signal contains multiple harmonic images that repeat at multiples of the sampling frequency, where each harmonic contains the necessary information to reconstruct the baseband signal. The differential sampling is performed according to a first and second control signals that are phase shifted with respect to each other. In embodiments of the invention, the control signals have pulse widths (or apertures) that operate to improve energy transfer to a desired harmonic in the harmonically rich signal.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 29, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Michael J. Bultman, Robert W. Cook, Richard C Looke, Charley D. Moses, Jr., Gregory S. Rawlins, Michael W. Rawlins
  • Patent number: 8548093
    Abstract: Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals is individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 1, 2013
    Assignee: ParkerVision, Inc.
    Inventors: David F. Sorrells, Gregory S. Rawlins, Michael W. Rawlins
  • Publication number: 20130244605
    Abstract: Multiple-Input-Single-Output (MISO) devices and associated VPA control algorithms are provided herein. For example, a method includes receiving a plurality of control signals. The method also generates a plurality of substantially constant envelope signals from the plurality of control signals and a reference signal. The method combines the plurality of substantially constant envelope signals at a multiple input single output (MISO) node to generate a desired waveform. Further, the method controls the desired waveform at the MISO node based on a signal constellation corresponding to the plurality of control signals.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 19, 2013
    Applicant: ParkerVision, Inc.
    Inventors: Gregory S. RAWLINS, David F. SORRELLS
  • Publication number: 20130223426
    Abstract: Methods, apparatuses, and systems for interfacing between a broadband wireless communication system and a Local Area Network (LAN) system are disclosed herein. For instance, the method can include converting first data formatted according to a broadband communication protocol, from a transceiver, to a local area network (LAN) protocol to generate LAN formatted data. The method can also include converting second data formatted according to the LAN protocol, from a computing device, to the broadband communication protocol to generate broadband-formatted data. Further, the method can includes transmitting the LAN-formatted data to the computing device and the broadband-formatted data to the transceiver.
    Type: Application
    Filed: April 16, 2013
    Publication date: August 29, 2013
    Applicant: ParkerVision, Inc.
    Inventor: Jeffrey L. PARKER