Patents Assigned to PD-LD, Inc.
  • Patent number: 8654326
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 18, 2014
    Assignee: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Publication number: 20140029641
    Abstract: Apparatus and methods for altering one or more spectral, spatial, or temporal characteristics of a light-emitting device are disclosed. Generally, such apparatus may include a volume Bragg grating (VBG) element that receives input light generated by a light-emitting device, conditions one or more characteristics of the input light, and causes the light-emitting device to generate light having the one or more characteristics of the conditioned light.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 30, 2014
    Applicant: PD-LD, INC.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Publication number: 20140002818
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Application
    Filed: August 29, 2013
    Publication date: January 2, 2014
    Applicant: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Patent number: 8553221
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: October 8, 2013
    Assignee: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Publication number: 20130240803
    Abstract: The improvement of the performance of holographic glasses with recorded holograms as measured by a figure of merit of the holographic glasses is disclosed. The improvement in the figure of merit of the holographic glasses is obtained at least in part with the addition of arsenic in the formation of the holographic glasses. The presence of arsenic increases the figure of merit as measured at a wavelength of interest of a holographic glass with a recorded hologram as compared to a holographic glass with a recorded hologram that does not contain arsenic.
    Type: Application
    Filed: May 7, 2013
    Publication date: September 19, 2013
    Applicant: PD-LD, Inc.
    Inventors: Eliezer M. Rabinovich, Boris L. Volodin, Vladimir S. Ban, Elena D. Melnik
  • Patent number: 8508729
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 13, 2013
    Assignee: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Publication number: 20130182247
    Abstract: Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
    Type: Application
    Filed: July 12, 2012
    Publication date: July 18, 2013
    Applicant: PD-LD, INC.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Patent number: 8455157
    Abstract: The improvement of the performance of holographic glasses with recorded holograms as measured by a figure of merit of the holographic glasses is disclosed. The improvement in the figure of merit of the holographic glasses is obtained at least in part with the addition of arsenic in the formation of the holographic glasses. The presence of arsenic increases the figure of merit as measured at a wavelength of interest of a holographic glass with a recorded hologram as compared to a holographic glass with a recorded hologram that does not contain arsenic.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 4, 2013
    Assignee: PD-LD, Inc.
    Inventors: Eliezer M. Rabinovich, Boris L. Volodin, Vladimir S. Ban, Elena D. Melnik
  • Publication number: 20130077645
    Abstract: High-power, phased-locked, laser arrays as disclosed herein utilize a system of optical elements that may be external to the laser oscillator array. Such an external optical system may achieve mutually coherent operation of all the emitters in a laser array, and coherent combination of the output of all the lasers in the array into a single beam. Such an “external gain harness” system may include: an optical lens/mirror system that mixes the output of all the emitters in the array; a holographic optical element that combines the output of all the lasers in the array, and an output coupler that selects a single path for the combined output and also selects a common operating frequency for all the coupled gain regions.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 28, 2013
    Applicant: PD-LD, INC.
    Inventor: PD-LD, INC.
  • Publication number: 20130077094
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Application
    Filed: November 21, 2012
    Publication date: March 28, 2013
    Applicant: PD-LD, INC.
    Inventor: PD-LD, INC.
  • Patent number: 8340150
    Abstract: High-power, phased-locked, laser arrays as disclosed herein utilize a system of optical elements that may be external to the laser oscillator array. Such an external optical system may achieve mutually coherent operation of all the emitters in a laser array, and coherent combination of the output of all the lasers in the array into a single beam. Such an “external gain harness” system may include: an optical lens/mirror system that mixes the output of all the emitters in the array; a holographic optical element that combines the output of all the lasers in the array, and an output coupler that selects a single path for the combined output and also selects a common operating frequency for all the coupled gain regions.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: December 25, 2012
    Assignee: PD-LD, Inc.
    Inventor: Boris Leonidovich Volodin
  • Patent number: 8339598
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 25, 2012
    Assignee: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Patent number: 8306088
    Abstract: Apparatus and methods for altering one or more spectral, spatial, or temporal characteristics of a light-emitting device are disclosed. Generally, such apparatus may include a volume Bragg grating (VBG) element that receives input light generated by a light-emitting device, conditions one or more characteristics of the input light, and causes the light-emitting device to generate light having the one or more characteristics of the conditioned light.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: November 6, 2012
    Assignee: PD-LD, Inc.
    Inventors: Boris Leonidovich Volodin, Vladimir Sinisa Ban
  • Publication number: 20120212734
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 23, 2012
    Applicant: PD-LD, INC.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Patent number: 8125635
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: February 28, 2012
    Assignee: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Publication number: 20120027035
    Abstract: High-power, phased-locked, laser arrays as disclosed herein utilize a system of optical elements that may be external to the laser oscillator array. Such an external optical system may achieve mutually coherent operation of all the emitters in a laser array, and coherent combination of the output of all the lasers in the array into a single beam. Such an “external gain harness” system may include: an optical lens/mirror system that mixes the output of all the emitters in the array; a holographic optical element that combines the output of all the lasers in the array, and an output coupler that selects a single path for the combined output and also selects a common operating frequency for all the coupled gain regions.
    Type: Application
    Filed: May 23, 2011
    Publication date: February 2, 2012
    Applicant: PD-LD, Inc.
    Inventor: Boris Leonidovich Volodin
  • Publication number: 20120019884
    Abstract: Three-dimensional holographic elements are disclosed. Three-dimensional Bragg gratings recorded on bulks of optical material are included in the disclosure. Such elements may be manufactured by placing a three-dimensional bulk of optical material directly behind a recorded master hologram, directing a reference beam onto a master hologram such that a replica of the master hologram is recorded in the optical material. The replica may form the three-dimensional holographic element. The master hologram may be Bragg grating formed on a surface of a transparent substrate.
    Type: Application
    Filed: May 23, 2011
    Publication date: January 26, 2012
    Applicant: PD-LD, INC.
    Inventors: Boris L. Volodin, Vladimir Sinisa Ban
  • Publication number: 20120019820
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Application
    Filed: June 21, 2011
    Publication date: January 26, 2012
    Applicant: PD-LD, Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Patent number: 7982869
    Abstract: Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: July 19, 2011
    Assignee: PD-LD Inc.
    Inventors: Vladimir Sinisa Ban, Boris Leonidovich Volodin, Neal R. Stoker
  • Patent number: 7949030
    Abstract: High-power, phased-locked, laser arrays as disclosed herein utilize a system of optical elements that may be external to the laser oscillator array. Such an external optical system may achieve mutually coherent operation of all the emitters in a laser array, and coherent combination of the output of all the lasers in the array into a single beam. Such an “external gain harness” system may include: an optical lens/mirror system that mixes the output of all the emitters in the array; a holographic optical element that combines the output of all the lasers in the array, and an output coupler that selects a single path for the combined output and also selects a common operating frequency for all the coupled gain regions.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: May 24, 2011
    Assignee: PD-LD, Inc.
    Inventor: Boris Leonidovich Volodin