Patents Assigned to Peloton Technology, Inc.
  • Publication number: 20240126271
    Abstract: The present invention relates to systems and methods for vehicles to closely follow one another safely through partial automation. Following closely behind another vehicle has significant fuel savings benefits, but is unsafe when done manually by the driver. On the opposite end of the spectrum, fully autonomous solutions require inordinate amounts of technology, and a level of robustness that is currently not cost effective.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Joseph Christian Gerdes, Eugene Berdichevsky
  • Publication number: 20240094741
    Abstract: Disclosed herein are a method and apparatus for automated following behind a lead vehicle. The lead vehicle navigates a path from a starting point to a destination. The lead vehicle and the following vehicle are connected via V2V communication, allowing one or more following vehicles to detect the path taken by the lead vehicle. A computerized control system on the following vehicle (a Follow-the-Leader, or FTL, system) allows the following vehicle to mimic the behavior of the lead vehicle, with the FTL system controlling steering to guide the following vehicle along the path previously navigated by the lead vehicle. In some embodiments, the lead vehicle and following vehicle may both use Global Navigation Satellite System (GNSS) position coordinates. In some embodiments, the following vehicle may also have a system of sensors to maintain a gap between the following and lead vehicles.
    Type: Application
    Filed: April 25, 2023
    Publication date: March 21, 2024
    Applicant: Peloton Technology, Inc.
    Inventors: Shad Laws, Joshua Switkes, Art Gavrysh, Marc Tange, Mark Herbert, Colleen Twitty, Dean Hogle, Andrew Tamoney, Eric Monsler, Carlos Rosario, Oliver Bayley, Richard Pallo, Louis Donayre, Laurenz Laubinger, Brian Smartt, Joyce Tam, Brian Silverman, Tabitha Jarvis, Murad Bharwani, Steven Erlein, Austin Schuh, Mark Luckevich
  • Publication number: 20240077887
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking, in a convenient, safe manner and thus to save significant amounts of fuel while increasing safety. In an embodiment, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, relative distance, relative acceleration/deceleration, and speed. Additional safety features in at least some embodiments include providing each driver with one or more visual displays of forward and rearward looking cameras. Long-range communications are provided for coordinating vehicles for linking, and for communicating analytics to fleet managers or others.
    Type: Application
    Filed: March 27, 2023
    Publication date: March 7, 2024
    Applicant: Peloton Technology, Inc.
    Inventors: JOSHUA P. SWITKES, JOSEPH CHRISTIAN GERDES, EUGENE BERDICHEVSKY
  • Patent number: 11919516
    Abstract: Systems and methods for platooning using aspects of various cruise control systems are described. In one aspect, a platooning system may cause an engine to provide a desired amount of torque by commanding a cruise control system to cause an amount of torque provided by the engine to be limited. In one aspect, a platooning system may cause a platoon to end in response to the detection of a condition that would cause a cruise control system to exit a cruise control state, such as pressing a brake pedal.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: March 5, 2024
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P Switkes, Stephen Erlein, Trevor Laing, Austin Schuh
  • Patent number: 11921520
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking to form a platoon. In one aspect, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, gear ratios on vehicles. A front vehicle can shift a gear which, via a vehicle-to-vehicle communication link, can cause a rear vehicle to shift gears. To maintain a gap, vehicles may shift gears at various relative positions based on a grade of a road.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: March 5, 2024
    Assignee: Peloton Technology, Inc
    Inventors: Mark S. Luckevich, Shad M. Laws, Joshua P. Switkes, Trevor W. Laing, Joseph Jackson Bendor
  • Patent number: 11835965
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 5, 2023
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Patent number: 11669108
    Abstract: Disclosed herein are a method and apparatus for automated following behind a lead vehicle. The lead vehicle navigates a path from a starting point to a destination. The lead vehicle and the following vehicle are connected via V2V communication, allowing one or more following vehicles to detect the path taken by the lead vehicle. A computerized control system on the following vehicle (a Follow-the-Leader, or FTL, system) allows the following vehicle to mimic the behavior of the lead vehicle, with the FTL system controlling steering to guide the following vehicle along the path previously navigated by the lead vehicle. In some embodiments, the lead vehicle and following vehicle may both use Global Navigation Satellite System (GNSS) position coordinates. In some embodiments, the following vehicle may also have a system of sensors to maintain a gap between the following and lead vehicles.
    Type: Grant
    Filed: July 6, 2019
    Date of Patent: June 6, 2023
    Assignee: Peloton Technology, Inc.
    Inventors: Shad Laws, Joshua Switkes, Art Gavrysh, Marc Tange, Mark Herbert, Colleen Twitty, Dean Hogle, Andrew Tamoney, Eric Monsler, Carlos Rosario, Oliver Bayley, Richard Pallo, Louis Donayre, Laurenz Laubinger, Brian Smartt, Joyce Tam, Brian Silverman, Tabitha Jarvis, Murad Bharwani, Steven Erlein, Austin Schuh, Mark Luckevich
  • Publication number: 20230135207
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Application
    Filed: June 13, 2022
    Publication date: May 4, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Austin B. SCHUH, Stephen M. ERLIEN, Stephan PLEINES, John L. JACOBS, Joshua P. SWITKES
  • Publication number: 20230114886
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Application
    Filed: May 23, 2022
    Publication date: April 13, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Publication number: 20230101708
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking to form a platoon. In one aspect, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, gear ratios on vehicles. A front vehicle can shift a gear which, via a vehicle-to-vehicle communication link, can cause a rear vehicle to shift gears. To maintain a gap, vehicles may shift gears at various relative positions based on a grade of a road.
    Type: Application
    Filed: May 13, 2022
    Publication date: March 30, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Mark S. Luckevich, Shad M. Laws, Joshua P. Switkes, Trevor W. Laing, Joseph Jackson Bendor
  • Patent number: 11614752
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking, in a convenient, safe manner and thus to save significant amounts of fuel while increasing safety. In an embodiment, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, relative distance, relative acceleration/deceleration, and speed. Additional safety features in at least some embodiments include providing each driver with one or more visual displays of forward and rearward looking cameras. Long-range communications are provided for coordinating vehicles for linking, and for communicating analytics to fleet managers or others.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 28, 2023
    Assignee: PELOTON TECHNOLOGY, INC.
    Inventors: Joshua P. Switkes, Joseph Christian Gerdes, Eugene Berdichevsky
  • Publication number: 20230054037
    Abstract: A system and method for mitigating or avoiding risks due to hazards encountered by platooning vehicles. The system and method involve interrogating, with one or more sensors, a space radially extending from a lead vehicle as the lead vehicle travels over the road surface, perceiving the environment within the space, ascertaining a hazard caused by an object in the space, and causing a following vehicle, operating in a platoon with the lead vehicle, to take a preemptive braking action to avoid or mitigate risks resulting from the hazard caused by the object in the space.
    Type: Application
    Filed: April 4, 2022
    Publication date: February 23, 2023
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. SWITKES, Stephen M. ERLIEN, Lorenz LAUBINGER
  • Patent number: 11474538
    Abstract: The present invention relates to systems and methods for vehicles to closely follow one another safely through partial automation. Following closely behind another vehicle has significant fuel savings benefits, but is unsafe when done manually by the driver. On the opposite end of the spectrum, fully autonomous solutions require inordinate amounts of technology, and a level of robustness that is currently not cost effective.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: October 18, 2022
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Joseph Christian Gerdes, Eugene Berdichevsky
  • Patent number: 11427196
    Abstract: Systems and methods for causing a vehicle to avoid an adverse action are described. In one aspect, a sensor on first vehicle may determine the existence and location of lane markers or objects, and use that information to cause a second vehicle to avoid exiting its lane or colliding with an object. Data transmitted from a first vehicle to a second vehicle may be used to determine a path for the second vehicle, such that it avoids an adverse action. This data may include information used to determine a pose of the second vehicle, kinematics of the second vehicle, determine dimensions of the second vehicle, and potential adverse actions. This data may be transmitted while the vehicles are platooning.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: August 30, 2022
    Assignee: Peloton Technology, Inc.
    Inventors: Joshua P Switkes, Shad M Laws, Lorenz Laubinger
  • Patent number: 11396292
    Abstract: Systems and methods for platooning vehicles are described. In some aspects, vehicles use sensors to determine a gap between each other. In response to the gap increasing beyond a threshold amount, and a threshold amount of torque being commanded by each of the vehicles, reducing the amount of torque being commanded by the front vehicle. The gap may be determined at least in part by sensors such as a radar, a lidar, and/or a camera. These sensors may be mounted on either a rear vehicle in the platoon, or a front vehicle in the platoon.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: July 26, 2022
    Assignee: Peloton Technology, Inc
    Inventors: John Kegelman, James Kuszmaul, Joshua P. Switkes, Trevor Laing
  • Publication number: 20220229446
    Abstract: Various applications for use of mass estimations of a vehicle, including to control operation of the vehicle, sharing the mass estimation with other vehicles and/or a Network Operations Center (NOC), organizing vehicles operating in a platoon and/or partially controlling the operation of one or more vehicles operating in a platoon based on the relative mass estimations between the platooning vehicles. When vehicles are operating in a platoon, the relative mass between a lead and a following vehicle may be used to scale torque and/or brake commands generated by the lead vehicle and sent to the following vehicle.
    Type: Application
    Filed: August 30, 2021
    Publication date: July 21, 2022
    Applicant: Peloton Technology, Inc.
    Inventors: Joshua P. Switkes, Stephen M. Erlien, Austin B. Schuh
  • Patent number: 11360485
    Abstract: A variety of methods, controllers and algorithms are described for identifying the back of a particular vehicle (e.g., a platoon partner) in a set of distance measurement scenes and/or for tracking the back of such a vehicle. The described techniques can be used in conjunction with a variety of different distance measuring technologies including radar, LIDAR, camera based distance measuring units and others. The described approaches are well suited for use in vehicle platooning and/or vehicle convoying systems including tractor-trailer truck platooning applications. In another aspect, technique are described for fusing sensor data obtained from different vehicles for use in the at least partial automatic control of a particular vehicle. The described techniques are well suited for use in conjunction with a variety of different vehicle control applications including platooning, convoying and other connected driving applications including tractor-trailer truck platooning applications.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: June 14, 2022
    Assignee: Peloton Technology, Inc.
    Inventors: Austin B. Schuh, Stephen M. Erlien, Stephan Pleines, John L. Jacobs, Joshua P. Switkes
  • Patent number: 11341856
    Abstract: Systems and methods for increasing the efficiency of vehicle platooning systems are described. In one aspect, drivers are more likely to enjoy a system if it begins platooning as desired and does not accidently end platoons. When a certain amount of data packets sent between vehicles are dropped, systems typically will either not engage in a platoon or end a current platoon. When a platoon has a very small gap between vehicles, the platoon should end—or not start, when a certain amount of packets are dropped. However, if a gap is large enough to provide a driver with more time to react, a system may accept a greater amount of dropped packets before it refuses to start a platoon or causes the end of a platoon.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: May 24, 2022
    Assignee: PELOTON TECHNOLOGY, INC.
    Inventors: Colleen Twitty, Evan Nakano, Stephen Erlien, Joshua Switkes
  • Patent number: 11334092
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking to form a platoon. In one aspect, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, gear ratios on vehicles. A front vehicle can shift a gear which, via a vehicle-to-vehicle communication link, can cause a rear vehicle to shift gears. To maintain a gap, vehicles may shift gears at various relative positions based on a grade of a road.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 17, 2022
    Assignee: Peloton Technology, Inc.
    Inventors: Mark S. Luckevich, Shad M. Laws, Joshua P. Switkes, Trevor W. Laing, Joseph Jackson Bendor
  • Publication number: 20220107655
    Abstract: Systems and methods for coordinating and controlling vehicles, for example heavy trucks, to follow closely behind each other, or linking to form a platoon. In one aspect, on-board controllers in each vehicle interact with vehicular sensors to monitor and control, for example, gear ratios on vehicles. A front vehicle can shift a gear which, via a vehicle-to-vehicle communication link, can cause a rear vehicle to shift gears. To maintain a gap, vehicles may shift gears at various relative positions based on a grade of a road.
    Type: Application
    Filed: September 10, 2018
    Publication date: April 7, 2022
    Applicant: Peloton Technology, Inc.
    Inventors: Mark S. Luckevich, Shad M. Laws, Joshua P. Switkes, Trevor W. Laing, Joseph Jackson Bendor