Abstract: A packaging system for a corrugated cardboard shipping container. The system uses two vertical compartmented inserts divided by a horizontal insert. The compartmented insert can be configured by a packer to consist of four to two rectangular compartments. The horizontal insert can be folded in half or have a quarter section folded away in order to accommodate a loading plan that requires items to protrude above the height of the bottom vertical compartmented insert. An optional diagonal divider and dunnage may be used prior to sealing the container.
Type:
Grant
Filed:
January 9, 2017
Date of Patent:
June 20, 2017
Assignee:
PepsiCo, Inc.
Inventors:
Max W. Chesser, David A. Hampton, David G. Lothian, John Stanley Phillips, Andrew T. Smith, Harold Smith
Abstract: Methods for measuring physico-chemical properties using a nuclear magnetic resonance spectrometer are disclosed, including methods to determine an initial amount of a substance, usually a liquid, contained inside a porous material and an initial amount of the substance, usually a liquid, present outside the porous material, methods to measure the release kinetics of a substance, such as a liquid, from a porous material, and methods for performing chemical reactions and other physico-chemical operations in situ inside a nuclear magnetic resonance probe after a sample is loaded into a nuclear magnetic resonance spectrometer. The apparatuses for performing these methods are also disclosed.
Type:
Grant
Filed:
March 15, 2013
Date of Patent:
June 13, 2017
Assignee:
PepsiCo, Inc.
Inventors:
Robert Corkery, Chris Dimelow, Sergey V. Dvinskikh, Adam Feiler, Istvan Furo, Eapen George, Peter Given, Julie Anne Grover, Pavel V. Yushmanov
Abstract: In at least some embodiments, a carbonated beverage is formed by filling a container with a beverage liquid, adding solid carbon dioxide, sealing the container, and then limiting the development of overpressure within the container. In some embodiments, overpressure within a container may be limited by an adsorber material element. In some embodiments, overpressure within a container may be limited through agitation of a sealed container.
Type:
Grant
Filed:
October 17, 2012
Date of Patent:
May 30, 2017
Assignee:
PepsiCo, Inc.
Inventors:
Taher Shabbir Dawoodi, John A. Eaton, Youssef El-Shoubary, Robert Martin Lowery, Herriot Moise
Abstract: The disclosure concerns apparatus comprising a first source of a first component, the first component one component for a finished free flowing food product and comprising a highly concentrated micro component. The apparatus includes a second source of a second component, the second component being another component for the finished free flowing food product. The apparatus includes a flow combiner configured to combine the first and second components to form a first mixture. The apparatus further includes a common delivery pipe configured to receive the first mixture from the flow combiner. The apparatus includes a dispenser configured to receive diluent flow from a third source, receive the first mixture from the common delivery pipe, combine the diluent flow with the first mixture to form a second mixture, and dispense the second mixture through a dispensing nozzle, the second mixture including the finished free flowing food product.
Type:
Grant
Filed:
August 28, 2013
Date of Patent:
March 14, 2017
Assignee:
PepsiCo, Inc.
Inventors:
Steven T. Jersey, Alexander Kirdin, Georgy Martsinovskiy, Igoris Misucenko, Mikhail Verbitsky
Abstract: Provided herein are polymer (e.g., PET) compositions comprising exfoliated hexagonal boron nitride (h-BN), methods of preparing and methods of using thereof. The methods for preparing the polymer (e.g., PET) compositions include providing a reactant mixture comprising exfoliated hexagonal boron nitride (h-BN) and a first monomeric or oligomeric reactant, and polymerizing the first monomeric or oligomeric reactant. Also provided are containers (e.g., bottles) prepared using the polymer (e.g., PET) compositions comprising exfoliated h-BN.
Abstract: A method of producing a diet carbonated soft drink comprising combining water and a sweetening amount of Rebaudioside D (Reb D) to produce Reb D sweetened water; injecting carbon dioxide into the Reb D sweetened water to produce carbonated Reb D sweetened water; combining the carbonated Reb D sweetened water with unsweetened syrup to form the diet carbonated soft drink. Alternatively, the method comprises combining water and a sweetening amount of Rebaudioside D (Reb D) to produce Reb D sweetened water; combining the Reb D sweetened water with syrup; injecting carbon dioxide into the combined Reb D sweetened water and syrup to produce the diet carbonated soft drink.
Abstract: An apparatus and method for assessing adhesion of labels applied to a bottle. A label adhered to the outer surface of the bottle is split vertically to form a leading end and trailing end of the label. The bottle may be secured to a support structure and the trailing end of the bottle may be secured to a weighted structure. The bottle is suspended in a heated chamber via the support structure until the adhesive fails, causing the weighted clamp to fall within the chamber. An elapsed time to failure is determined for the bottle and compared to a benchmark time and/or metric as an indicator of how the adhesive is likely to perform during shipping and/or storing the bottle.
Abstract: A packaging system for a corrugated cardboard shipping container. The system uses two vertical compartmented inserts divided by a horizontal insert. The compartmented insert can be configured by a packer to consist of four to two rectangular compartments. The horizontal insert can be folded in half or have a quarter section folded away in order to accommodate a loading plan that requires items to protrude above the height of the bottom vertical compartmented insert. An optional diagonal divider and dunnage may be used prior to sealing the container.
Type:
Grant
Filed:
August 15, 2014
Date of Patent:
February 21, 2017
Assignee:
PepsiCo, Inc.
Inventors:
Max W Cheeser, David A Hampton, David G Lothian, John Stanley Phillips, Andrew Smith, Harold Smith