Patents Assigned to Peratech Limited
  • Patent number: 8803536
    Abstract: A detector comprising control circuitry and a sensor in which the detector comprises three layers. The first layer includes a first set of mutually connected electrically conducting elements and a second set of mutually connected electrically conducting elements. The third layer comprises an electrically conducting plane, and the second layer extends between the first and third layers. The electrical conductivity of the second layer varies in accordance with variations in the intensity of the interactions. In a first mode, the control circuit applies voltage between the first and third layers to generate a first current through the second layer, and provides a measurement of the first current. In a second mode, the control circuit applies voltage between the first and second sets of electrically conducting elements to generate a second current through the second layer, and provides a measurement of the second current.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: August 12, 2014
    Assignee: Peratech Limited
    Inventors: Mark Andrew Graham, David Lussey
  • Patent number: 8765027
    Abstract: A polymer composition comprises at least one substantially non-conductive polymer binder and at least first and second electrically conductive fillers. The first electrically conductive filler is comprised of particles having avoid-bearing structure; and the second electrically conductive filler is comprised of particles which are acicular in shape.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: July 1, 2014
    Assignee: Peratech Limited
    Inventors: David Lussey, David Bloor, Paul Laughlin, Cyril Hilsum
  • Publication number: 20140173495
    Abstract: Apparatus for displaying an electronic book comprising a touch screen and a processor. The touch screen displays a selected page of an electronic book, and has a touch input device configured to generate signals in response to a touch input. The processor comprises a touch acquisition module that generates touch position information, a gesture recognition module that determines if a touch input is a bookmark gesture in dependence of whether the touch position information is within a bookmark area, and a bookmark processing module that generates a bookmark for the selected page when a bookmark gesture is recognized by the gesture recognition module.
    Type: Application
    Filed: December 13, 2012
    Publication date: June 19, 2014
    Applicant: PERATECH LIMITED
    Inventor: PERATECH LIMITED
  • Publication number: 20140109698
    Abstract: An electrically responsive composite material (1110) specially adapted for touch screen, comprising a carrier layer (1301) having a length and a width and a thickness (1303) that is relatively small compared to said length and said width. The composite material also comprises a plurality of electrically conductive or semi-conductive particles (201). The particles (201) are agglomerated to form a plurality of agglomerates (104, 1403) dispersed within the carrier layer such that each said agglomerate comprises a plurality of the particles (201). The agglomerates are arranged to provide electrical conduction across the thickness of the carrier layer in response to applied pressure such that the electrically responsive composite material has a resistance that reduces in response to applied pressure.
    Type: Application
    Filed: March 22, 2012
    Publication date: April 24, 2014
    Applicant: PERATECH LIMITED
    Inventors: Christopher John Lussey, Paul Jonathan Laughlin, Adam Graham, David Bloor, David Lussey
  • Patent number: 8449974
    Abstract: An electrically responsive composite material is disclosed, along with a method of producing an electrically responsive composite material, a transducer having a substrate for supporting a flowable polymer liquid and a method of fabricating a transducer. The electrically responsive composite material produced is configurable for application in a transducer. The method includes the steps of receiving the flowable polymer liquid and introducing electrically conductive acicular particles (1501, 1502) to facilitate the conduction of electricity by quantum tunneling. Dielectric particles (1505, 1506) are added of a size relative to the acicular particles such that a plurality of these dielectric particles are dispersed between adjacent acicular particles.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 28, 2013
    Assignee: Peratech Limited
    Inventors: David Lussey, David Bloor, Paul Jonathan Laughlin, Adam Graham, Cyril Hilsum
  • Patent number: 8373079
    Abstract: A manually operable sensor for providing control signals to an electronic device. A fabric has a length substantially longer than its width with insulating yarns and electrically conductive yarns included therein, such that the conductive yarns define three conductive tracks running the length of the fabric. The conductive tracks are configured to interface with an electronic device at a first end and, at a second end, an active region of the fabric forms part of a sensor assembly that is receptive to a manually applied pressure. The sensor comprises first and second conductive regions to which a first and a second conductive track are connected respectively, to apply an electric potential to each conductive region. A conductive path is formed between a connected conductive track and the third conductive track of said active region when manual pressure is applied to one of the conductive regions.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: February 12, 2013
    Assignee: Peratech Limited
    Inventor: Stuart Mark Walkington
  • Patent number: 8300868
    Abstract: A fabric bag for holding an audio playback device. The fabric bag includes a control device constructed substantially in fabric for controlling an audio playback device. The control device comprises a control portion having indicated regions thereon. The indicated regions are responsive to individually applied manual presses so as to control discrete operations of said audio playback device, and the control portion, including the indicated regions, is responsive to manually applied strokes or gestures so as to control variable operations of the audio playback device.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: October 30, 2012
    Assignee: Peratech Limited
    Inventors: Gemma Kilburn, Tania Jane Beagley
  • Publication number: 20120120009
    Abstract: A sensor for, and a method of, generating electrical signals indicating a positional property and an extent property of a mechanical interaction within a sensing zone. The sensor comprises a plurality of conductive layers. At least one conductive layer is a pressure-sensitive conductive layer comprising a quantum tunnelling conductance (qtc) material. Contact between conductive layers is allowed during the absence of a mechanical interaction within said sensing zone. The sensor may be configured to provide a three-terminal sensing functionality or a four-terminal sensing functionality. The sensing zone may be substantially two-dimensional or substantially three-dimensional. The sensor may be substantially flexible or substantially rigid.
    Type: Application
    Filed: March 24, 2010
    Publication date: May 17, 2012
    Applicant: PERATECH LIMITED
    Inventors: David Lussey, Mark Andrew Graham
  • Patent number: 8169295
    Abstract: A manually operable position sensor is shown, for providing control signals to an electronic device, such as an audio player. A fabric ribbon (101) has a length substantially longer than its width with insulating yarns and electrically conducting yarns included therein. The conducting yarns define three conductive tracks (103, 104, 105) running the length of the fabric. The conductive tracks are configured to interface with an electronic device at a first end. At a second end, an active region of the fabric forms part of a sensor assembly that is receptive to a manually applied pressure.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 1, 2012
    Assignee: Peratech Limited
    Inventor: Stuart Mark Walkington
  • Publication number: 20120074970
    Abstract: A sensor configured to experience resistance changes in response to an external interaction is disclosed. The sensor comprises a first layer of a conductive material having a first electrode connected thereto; a second intermediate layer of a material having a resistance sensitive to said external interaction; and a third layer consisting of a first set of fingers interdigitated with a second set of fingers. The first set of fingers has a second electrode attached thereto whilst the second set of fingers has a third electrode attached thereto. The second layer comprises a layer formed of a quantum tunnelling composite. In a preferred embodiment, the first electrode is connected to one of said second electrode or said third electrode to make a parallel connection. A method for constructing such a sensing device for sensing an external interaction is also disclosed.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 29, 2012
    Applicant: PERATECH LIMITED
    Inventors: Mark Andrew Graham, David Lussey
  • Publication number: 20120074966
    Abstract: A detector comprising control circuitry and a sensor, responsive to interactions of varying intensities, comprising three layers. The first layer includes a first set of mutually connected electrically conducting elements and a second set of mutually connected electrically conducting elements. The third layer comprises an electrically conducting plane, and the second layer extends between the first and third layers. The electrical conductivity of the second layer varies in accordance with variations in the intensity of the interactions. In a first mode, the control circuit applies voltage between the first and third layers to generate a first current through the second layer, and provides a measurement of the first current. In a second mode, the control circuit applies voltage between the first and second sets of electrically conducting elements to generate a second current through the second layer, and provides a measurement of the second current.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 29, 2012
    Applicant: PERATECH LIMITED
    Inventors: Mark Andrew Graham, David Lussey
  • Patent number: 8089336
    Abstract: Apparatus for detecting the position of the mechanical interaction is disclosed. A first fabric conducting layer (601) has electrically conducting fibers, electrically conducting tracks (602, 603) and terminals (604) connectable to a circuit. A second fabric layer (605) has conducting fibers and insulating fibers. A third separating layer (608) is constructed from an insulator with openings to allow conduction to occur. A forth fabric conducting layer (609) also has electrically conducting fibers, electrically conducting tracks (610, 611) and terminals connectable to a circuit. The second fabric (605) is a knitted fabric having a substantially smooth back (606) and an irregular front (607). The knitted fabric is positioned such that the irregular surface is in contact with the first conducting layer and the smooth surface is in contact with the separating layer (608).
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: January 3, 2012
    Assignee: Peratech Limited
    Inventor: John Burkitt
  • Publication number: 20110253948
    Abstract: A polymer composition comprises at least one substantially non-conductive polymer binder and at least first and second electrically conductive fillers. The first electrically conductive filler is comprised of particles having avoid-bearing structure; and the second electrically conductive filler is comprised of particles which are acicular in shape.
    Type: Application
    Filed: May 2, 2008
    Publication date: October 20, 2011
    Applicant: PERATECH LIMITED
    Inventors: David Lussey, David Bloor, Paul Laughlin, Cyril Hilsum
  • Publication number: 20100283749
    Abstract: A sensor having a rigid connector connectable to an interface device for interfacing with a processing device. The rigid connector is configured to convey information to the interface device, the information identifying a property of the sensor. An interface device connectable to the rigid connector of a sensor and configured to receive information conveyed by the connector, the information identifying a property of the sensor. A method of interfacing a sensor to a processing device. The information conveyed by the connector may identify the ability of the sensor to identify a position in one dimension or to identify a position in two dimensions, or the ability of the sensor to identify manually applied presses or manually applied gestures. The sensor may be a fabric position sensor or a flexible circuit sensor.
    Type: Application
    Filed: September 10, 2008
    Publication date: November 11, 2010
    Applicant: PERATECH LIMITED
    Inventor: Stuart Mark Walkington
  • Publication number: 20100126840
    Abstract: A manually operable sensor for providing control signals to an electronic device. A fabric has a length substantially longer than its width with insulating yarns and electrically conductive yarns included therein, such that the conductive yarns define three conductive tracks running the length of the fabric. The conductive tracks are configured to interface with an electronic device at a first end and, at a second end, an active region of the fabric forms part of a sensor assembly that is receptive to a manually applied pressure. The sensor comprises first and second conductive regions to which a first and a second conductive track are connected respectively, to apply an electric potential to each conductive region. A conductive path is formed between a connected conductive track and the third conductive track of said active region when manual pressure is applied to one of the conductive regions.
    Type: Application
    Filed: November 7, 2007
    Publication date: May 27, 2010
    Applicant: PERATECH LIMITED
    Inventor: Stuart Mark Walkington
  • Publication number: 20100062148
    Abstract: An electrically responsive composite material is disclosed, along with a method of producing an electrically responsive composite material, a transducer having a substrate for supporting a flowable polymer liquid and a method of fabricating a transducer. The electrically responsive composite material produced is configurable for application in a transducer. The method includes the steps of receiving the flowable polymer liquid and introducing electrically conductive acicular particles (1501, 1502) to facilitate the conduction of electricity by quantum tunneling. Dielectric particles (1505, 1506) are added of a size relative to the acicular particles such that a plurality of these dielectric particles are dispersed between adjacent acicular particles.
    Type: Application
    Filed: August 26, 2009
    Publication date: March 11, 2010
    Applicant: PERATECH LIMITED
    Inventors: David Lussey, David Bloor, Paul Jonathan Laughlin, Adam Graham, Cyril Hilsum
  • Patent number: 7603917
    Abstract: A sensor (100) for detecting input force and/or torque with six degrees of freedom for use as a computer input device is provided. The sensor has a technically simple detection mechanism which obviates the need for complex and fragile securing components. A user-manipulable core (106) is enclosed in a casing (109). Electrodes (114) in the casing (109) are separated from the core (106) by a layer of elastically deformable conductive polymer (108). Electric current flows between the core (106) and the electrodes (114). The polymer (108) has variable resistivity depending on the stress it experiences. Manipulation of the core (106) causes deformation of the polymer (108); the type of deformation, and hence the type of force/torque applied to core (106), is determinable from the currents flowing through the electrodes (114).
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: October 20, 2009
    Assignee: Peratech Limited
    Inventors: Mark Graham, Chris Lussey
  • Patent number: 7554045
    Abstract: A linear sensor (101, 201) comprising electrically conductive textile fibers (103, 105, 205, 207) and electrically insulating textile fibers (106, 208). The sensor comprises at least two conductive elements (102, 104, 204, 206) having electrically conductive textile fibers (103,105, 205, 207). The sensor also has electrically insulating textile fibers (106, 208) spaced to separate the two electrically conductive elements when no pressure is applied to said sensor, and to allow electrical conduction between the two conductive elements under the application of pressure.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: June 30, 2009
    Assignee: Peratech Limited
    Inventors: David Lee Sandbach, Stuart Mark Walkington
  • Patent number: 7554051
    Abstract: A sensor comprising a plurality of layers, comprising a first mask layer; a second mask layer; a third mask layer disposed between said first and second mask layers and defining an aperture; and a first conductive layer disposed between the first mask layer and the third mask layer; a second conductive layer disposed between the second mask layer and the third mask layer; and a separator layer extending across the aperture in the third mask layer, said separator layer being configured to separate the first and second conductive layers when no pressure is applied to the sensor and to allow electrical contact between said first and second conductive layers during a mechanical interaction with said sensor, wherein each mask layer is formed from an electrically insulating material and has at least one side attached to another of said mask layers by adhesive.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: June 30, 2009
    Assignee: Peratech Limited
    Inventor: Phillipe Georges Crispin
  • Publication number: 20080289886
    Abstract: Apparatus for detecting the position of the mechanical interaction is disclosed. A first fabric conducting layer (601) has electrically conducting fibres, electrically conducting tracks (602, 603) and terminals (604) connectable to a circuit. A second fabric layer (605) has conducting fibres and insulating fibres. A third separating layer (608) is constructed from an insulator with openings to allow conduction to occur. A forth fabric conducting layer (609) also has electrically conducting fibres, electrically conducting tracks (610, 611) and terminals connectable to a circuit. The second fabric (605) is a knitted fabric having a substantially smooth back (606) and an irregular front (607). The knitted fabric is positioned such that the irregular surface is in contact with the first conducting layer and the smooth surface is in contact with the separating layer (608).
    Type: Application
    Filed: May 2, 2008
    Publication date: November 27, 2008
    Applicant: Peratech Limited
    Inventor: John Burkitt