Abstract: Clay stabilization compositions include one or a plurality of triamino compounds and/or derivatives thereof, fluids containing an effective amount of the clay stabilization compositions and methods for making and using same.
Abstract: Clay stabilization compositions include one or a plurality of triamino compounds and/or derivatives thereof, fluids containing an effective amount of the clay stabilization compositions and methods for making and using same.
Abstract: Clay stabilization compositions include one or a plurality of triamino compounds and/or derivatives thereof, fluids containing an effective amount of the clay stabilization compositions and methods for making and using same.
Abstract: Proppant transport can be performed with a fluid having: (a) a low concentration of a crosslinkable first polymer, (b) a delayed effect crosslinker, and (c) optionally, a small amount of a second, high molecular weight, friction-reducing polymer composition.
Type:
Application
Filed:
November 30, 2017
Publication date:
May 30, 2019
Applicant:
PFP Technology, LLC
Inventors:
Robert McDaniel, Rasolomiarantsoa Nathalie
Abstract: A friction-reducing additive composition that contains a polymeric mixture containing (a) a first polymeric friction reducer that comprises an anionic friction reducer having a molecular weight above 15 million and (b) a second polymeric friction reducer that is either a nonionic or an amphoteric friction reducer. This combination of friction reducers exhibits superior suspensive characteristics for hydrophobically coated proppants in high TDS brines, such as those that reuse fracturing fluids or backwaters. Optionally, gaseous nitrogen can be generated downhole or in the treated field by introducing a two-part system of reactants that chemically interact so as to produce gaseous nitrogen bubbles that help to suspend hydrophobically coated proppants and provide an additional method to control proppant placement within a treated subterranean field.
Abstract: The present disclosure relates to a crosslinking composition for use in crosslinking an aqueous suspension of guar, for use as a well treatment fluid and/or proppant carrier fluid for natural gas extraction. The present crosslinking composition is an aqueous suspension of hydroboracite. The composition may also comprise varying amounts of borax, canola oil, xanthan, glycerol, and/or NaOH. The composition may be selected to effect a desired delay in the crosslinking reaction in order to customize the viscosity and reaction time to the method of use, thereby maximizing proppant delivery while minimizing pump pressure.
Abstract: The present disclosure relates to fracturing fluids that use friction reducers. The composition of the present disclosure is a slurry comprising a water-soluble polymer suspended in an oil-based vehicle with the aid of a suspension agent and a surfactant. Specifically, the water-soluble polymer is polyacrylamide and the oil-based vehicle is petroleum distillate. The surfactant is an ethoxylated nonionic emulsifier. The surfactant can be a fatty chain EO/PO (ethylene oxide propylene oxide) and/or oxylated propoxy copolymer. The suspension aid is any variation of diblock copolymers based on styrene and ethylene/propylene. The composition may also contain a dispersant such as organophilic clay or a synthetic alternative as the suspension agent.
Abstract: A process and the guar produced thereby, the guar having superior performance in hydraulic fracturing applications. The guar is produced by first washing, soaking, and prehydrating guar gum splits in hot water. Calcium carbide which is then added to the mixture results in the production of acetylene gas, forcing the guar cells to open during shearing. Shearing the guar gum splits produces flakes, which are then ground and sieved. The fine guar particles produced are spherical in shape, with improved hydration viscosity, and better cross-linking performance than guars presently available. An operator can use twenty-percent (20%) less guar to create the same fracturing geometry, resulting in less formation damage. The improved guar can even be used at ultra low loadings. Further, it leaves less residue after break.