Abstract: The present invention comprises a connector comprising shape memory material such as a shape memory alloy, an optical fiber conduit and an axial stress opening traversing the connector from the connector surface to the fiber conduit and along at least a portion of a longitudinal length of the connector. The fiber conduit is dimensioned for optical fibers and to secure two optical fibers in abutment alignment for light signal transmission from one fiber to the other, with minimal attenuation and for securing the fibers without crushing or other damage to the fibers.
Type:
Application
Filed:
June 16, 2008
Publication date:
February 10, 2011
Applicant:
PHASOPTX INC.
Inventors:
Eric Weynant, Patrick Zivojinovic, Eric Menu, Alex Fraser, Mathieu Bergeron
Abstract: The present invention is directed to an evanescent field optical fiber device including one or more optical fibers and a support which assures mechanical strength of the optical fiber wherein one or more grooves has been machined in the support and in the coating of the one or more optical fiber in order to gain access to the evanescent field. The invention is also directed to the use of a support in the mechanical and chemical removal of coating from an optical fiber and a method of gaining access to the evanescent field of an optical fiber device.
Abstract: The present solution relates to a system and method of an optical connector assembly for interconnecting two optical fibers. The optical connector assembly has a splice with a fiber conduit for holding bare ends of the two optical fibers together. Additionally, the optical connector has two corresponding ferrules. The two corresponding ferrules are for securing optical fibers and for aligning the bare end of an optical fiber into the splice without catching an edge. The method includes compressing along the longitudinal axis a first ferrule against the splice to force a guiding member of the first ferrule into a first aperture of the splice, thus opening a conduit of the splice at the first aperture. Once the optic fiber is inserted, the method includes releasing the compression along the longitudinal axis of the first ferrule against the splice to allow the splice to apply radial retention forces on fibers. A sheath to form a connector body of the optical connector assembly interconnects the ferrules.
Abstract: The present solution relates to a system and method of an optical connector assembly for interconnecting two optical fibers. The optical connector assembly has a splice with a fiber conduit for holding bare ends of the two optical fibers together. Additionally, the optical connector has two corresponding ferrules. The two corresponding ferrules are for securing optical fibers and for aligning the bare end of an optical fiber into the splice without catching an edge. The method includes compressing along the longitudinal axis a first ferrule against the splice to force a guiding member of the first ferrule into a first aperture of the splice, thus opening a conduit of the splice at the first aperture. Once the optic fiber is inserted, the method includes releasing the compression along the longitudinal axis of the first ferrule against the splice to allow the splice to apply radial retention forces on fibers. A sheath to form a connector body of the optical connector assembly interconnects the ferrules.