Abstract: A laser device includes a first waveguiding layer, an active layer, a second waveguiding layer, a contact layer, a first insulating layer, a plurality of hole fillings, a first electrode, and a second electrode. The first waveguiding layer, the active layer, the second waveguiding layer, and the contact layer are stacked in sequence to form an epitaxy structure. The epitaxy structure has a first platform, the first platform has multiple holes to form a photonic crystal structure. The first insulating layer is over an upper surface and a sidewall surface of the first platform, wherein the first insulating layer has a first aperture corresponding to the photonic crystal structure. The hole fillings are respectively filled in the holes. The first electrode is over the photonic crystal structure. The second electrode is electrically connected to the first waveguiding layer.
Abstract: An electrically pumped photonic-crystal surface-emitting laser, the epitaxy structure has a first mesa, the first mesa has multiple air holes and forming a photonic crystal structure, the epitaxy structure further has a second mesa, the second mesa and photonic crystal structure is facing the same direction; a first metal electrode arranged on the insulating layer, and covering the photonic crystal structure; a second metal electrode arranged on the second mesa and protruding out of the groove, making the first metal electrode and the second metal electrode face the same direction; and further make the first metal electrode connect to the first connecting metal and make the second metal electrode connect to the second connecting metal for making the photonic crystal structure become flip chip.
Abstract: A photonic crystal surface emitting laser device including at least one photonic crystal surface emitting laser unit is provided. The photonic crystal surface emitting laser unit includes a light-emitting layer, a photonic crystal layer, a doped semiconductor layer, and a diffractive grating. The light-emitting layer is configured to emit a light beam. The photonic crystal layer is disposed on one side of the light-emitting layer. The doped layer is disposed on another side of the light-emitting layer. The diffractive grating is disposed on the photonic crystal layer or the doped semiconductor layer.
Abstract: A surface-emitting laser including a cladding layer, an active region, a first grating, a plurality of second gratings, a first electrode, and a second electrode is provided. The active region is disposed on the cladding layer. The first grating is disposed on the active region. The second gratings are disposed on the active region and separately distributed among the first grating. A diffraction order of the first grating is different from a diffraction order of the second gratings. The first electrode is electrically connected to the cladding layer. The second electrode covers at least the first grating.