Patents Assigned to PhosphonicS Limited
  • Patent number: 11866520
    Abstract: A substantially insoluble compound having a polysaccharide backbone which is derivatised at one or more of its hydroxyl groups with a ligand (L) bound to the sugar moiety by a sulphur atom which may be tailored according to a wide range of applications. The compound is useful as a catalyst and in removal of contaminants from a feed containing particularly metal ions.
    Type: Grant
    Filed: November 22, 2018
    Date of Patent: January 9, 2024
    Assignee: Phosphonics Limited
    Inventors: Nicholas P. Taylor, Laura C. Forfar, Paul M. Murray, Christopher North, Alexander Watson
  • Patent number: 7728159
    Abstract: The invention relates to new compounds of the formula, wherein R and R1 are each independently hydrogen, a linear or branched C1-40 alkyl, C2-40 alkenyl or C2-40 alkynyl group, an aryl or C1-40 alkylaryl group or an optionally complex metal ion Mn+/n wherein n is an integer from 1 to 8; the free valences of the silicate oxygen atoms are saturated by one or more of: silicon atoms of other groups of the formula, hydrogen, a linear or branched C1-12 alkyl group or by cross-linking bridge members R3qM1(OR2)mOk/2 or Al(OR2)3-pOp/2 or R3 Al(OR?)2-1 O1/2; wherein M1 is Si or Ti; R2 is linear or branched C1-12 alkyl group; and R3 is alinear or branched C1-6 alkyl group; k is an integer from 1 to 4 and q and m are integers from 0 to 2; such that M+k+q=4; and p is an integer from 1 to 3; and r is an integer from 1 to 2; or other known oxo metal bridging systems; x, y and z are integers such that the radio of x:y+z, varies from 0.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: June 1, 2010
    Assignee: Phosphonics Limited
    Inventors: Alice Caroline Sullivan, John Robert Howe Wilson
  • Publication number: 20060241314
    Abstract: The invention relates to new compounds of the formula, wherein R and R1 are each independently hydrogen, a linear or branched C1-40 alkyl, C2-40 alkenyl or C2-40 alkynyl group, an aryl or C1-40 alkylaryl group or an optionally complex metal ion Mn+/n wherein n is an integer from 1 to 8; the free valences of the silicate oxygen atoms are saturated by one or more of: silicon atoms of other groups of the formula, hydrogen, a linear or branched C1-12 alkyl qroup or by cross-linking bridge members R3qM1(OR2)mOk/2 or Al(OR2)3·pOp/2 or R3Al(OR2)2·rOr/2; where M1 is Si or Ti; R2 is linear or branched C1-12 alkyl group; and R3 is a linear or branched C1-6 alkyl group; k is an integer from 1 to 4 and q and m are integers from 0 to 2; such that m+k+q=4; and p is an integer from 1 to 3; and r is an integer from 1 to 2; or other known oxo metal bridging systems; x, y and z are integers such that the radio of x:y+z, varies from 0.
    Type: Application
    Filed: June 19, 2006
    Publication date: October 26, 2006
    Applicant: PhosphonicS Limited
    Inventors: Alice Sullivan, John Wilson
  • Patent number: 7064226
    Abstract: The invention relates to new compounds of the formula, wherein R and R1 are each independently hydrogen, a linear or branched C1-40 alkyl, C2-40 alkenyl or C2-40 alkynyl group, an aryl or C1-40 alkylaryl group or an optionally complex metal ion Mn+/n wherein n is an integer from 1 to 8; the free valences of the silicate oxygen atoms are saturated by one or more of: silicon atoms of other groups of the formula, hydrogen, a linear or branched C1-12 alkyl group or by cross-linking bridge members R3qM1(OR2)mOk/2 or Al(OR2)3-pOp/2 or R3Al(OR2)2-rOr/2; where M1 is Si or Ti; R2 is linear or branched C1-12 alkyl group; and R3 is a linear or branched C1-6 alkyl group; k is an integer from 1 to 4 and q and m are integers from 0 to 2; such that m+k+q=4; and p is an integer from 1 to 3; and r is an integer from 1 to 2; or other known oxo metal bridging systems; x, y and z are integers such that the radio of x:y+z, varies from 0.
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: June 20, 2006
    Assignee: PhosphonicS Limited
    Inventors: Alice Caroline Sullivan, John Robert Howe Wilson