Abstract: A computational microscope and a method for its operation are disclosed. In some embodiments, the microscope maps points on a sample to point in an intensity pattern on a one-to-many basis. The microscope utilizes illumination angle coding, polarization coding, amplitude coding, and phase coding to capture more information than prior art computational microscopes. Although the resulting intensity patterns are not human-interpretable images of the sample, they contain more information about the sample, by virtue of the aforementioned coding techniques, than is captured by prior-art microscopes. Machine-learning algorithms, such as neural networks, are used to analyze the intensity patterns and extract useful information, such as cellular events or cell behavior.
Abstract: A nitride semiconductor structure and a semiconductor light emitting device including the same are revealed. The nitride semiconductor structure includes a multiple quantum well structure formed by a plurality of well layers and barrier layers stacked alternately. One well layer is disposed between every two barrier layers. The barrier layer is made of AlxInyGa1-x-yN (0<x<1, 0<y<1, 0<x+y<1) while the well layer is made of InzGa1-zN (0<z<1). Thereby quaternary composition is adjusted for lattice match between the barrier layers and the well layers. Thus crystal defect caused by lattice mismatch is improved.