Abstract: An apparatus for inducing of the index of refraction of a substrate sensitive to electromagnetic radiation. The apparatus is capable of generating a first beam of electromagnetic radiation and a second beam of electromagnetic radiation that is different from the first beam. The first and the second beams converge toward a treatment area on the substrate, which is illuminated with electromagnetic radiation. The first beam and the second beam interact to create an interference pattern over a limited portion of the treatment area.
Type:
Grant
Filed:
March 1, 2007
Date of Patent:
August 26, 2008
Assignee:
Lxsix Photonics Inc.
Inventors:
Claude Beaulieu, Paul Lefebvre, Gilles L. Tourte, André R. Vincelette
Abstract: A method for fabricating a micro structure includes depositing a first layer of a first material over a substrate; patterning a first hard mask over the first layer; depositing a second layer of a second material over the first layer and the first hard mask; patterning a second hard mask over the second layer; and selectively removing the first material and the second material not covered by any of the first mask and the second mask to produce over the substrate the micro structure having a first structure portion having a first height and a second structure portion having a second height.
Type:
Grant
Filed:
May 10, 2006
Date of Patent:
August 26, 2008
Assignee:
Spatial Photonics, Inc.
Inventors:
Chii Guang Lee, Shaoher X. Pan, Hung Kwei Hu
Abstract: A class of nanophotonic integrated circuit (nPIC) has been disclosed that is a platform technology for fiberoptic communication and computing, that is fabricated from waveguides that are based on natural index contrast (NIC) principle. A multifunctional nPIC and its fabrication details have been described. The nPIC is also known as an “optical processor”. A novel nanomaterial “dendrimer” is highlighted as the key ingredient that enables the fabrication of the nPICs and its multifunctionality from the same basic process. Other nanomaterials such as spin-on glass, nano-silica sol, and a combination of any of these materials can also be used via the natural index contrast method. Several preferred embodiments of the nPIC are described.
Abstract: The present invention relates to a photodiode of an image sensor using a three-dimensional multi-layer substrate, and more particularly, to a method of implementing a buried type photodiode and a structure thereof, and a trench contact method for connecting a photodiode in a multi-layer substrate and a transistor for signal detection.
Abstract: A spatial light modulator includes a mirror plate comprising a reflective upper surface, a louver surface having a recess in the lower surface, a first cavity having an opening on the lower surface, and a cantilever situated under the recess and connected with the lower portion of the mirror plate. The mirror plate can tilt around a hinge component extending into the first cavity. The hinge component is supported by a stationary substrate. The tilt movement of the mirror plate can be stopped when the cantilever comes to contact with a stationary object.
Abstract: A film structure of a ferroelectric single crystal which can be beneficially used in the fabrication of high-performance electric and electronic parts and devices is prepared by forming an electrode layer having a perovskite crystal structure on a substrate made of a silicon or ferroelectric single crystal optionally polished to have a off-axis crystal structure, and epitaxially growing a layer of a ferroelectric single crystal thereon by pulsed laser deposition (PLD) or metallorganic chemical vapor deposition (MOCVD).
Type:
Grant
Filed:
July 14, 2003
Date of Patent:
July 15, 2008
Assignee:
Ibule Photonics, Inc.
Inventors:
Jaehwan Eun, Sang-Goo Lee, Hyeongjoon Kim, Minchan Kim
Abstract: Fabrication of a three-dimensional semiconductor structure is provided by the present disclosure. A buffer oxide film, a nitride film, and an ONO dielectric layer are formed on a handle wafer. A semiconductor layer and an oxide film are formed on a donor wafer, which is turned over and is then bonded to a handle wafer. Silicon of the donor wafer is then removed. In the same manner, blue, green, and red diode layers, and a transistor layer are sequentially formed. A metal layer is formed on the transistor layer. Inter-elements contact and pixel separation processes are performed and a support layer is bonded. The whole device is turned over and the nitride film is etched using an etch-stop layer, thus removing the handle wafer. After the elements are separated, packaging is performed to complete the device. Therefore, a back illuminated image sensor of a multi-layer structure can be provided.
Abstract: A high contrast spatial light modulator for display and printing is fabricated by coupling a high active reflection area fill-ratio and non-diffractive micro-mirror array with a high electrostatic efficiency and low surface adhesion control substrate.
Abstract: A spatial light modulator includes a two-dimensional array of hexagonal mirror plates disposed in a honeycomb pattern over a substrate. Each of the hexagonal mirror plates is supported by one or more structural members. There is a gap between adjacent hexagonal mirror plates. The structural members are not located in the gap.
Abstract: A display system includes a transparent tapered plate comprising a first face, a second face, and a third face. The first face is substantially smaller than the second face and the third face. The display system also includes a row of tiltable mirror plates each comprising a reflective surface. Each of the mirror plates is configured to tilt to an “on” position to reflect incident light in an “on” direction or to tilt to an “off” position to reflect incident light in an “off” direction. An optical scanning system is configured to control the direction of the light reflected by the mirror plates in the “on” direction. The row of the tiltable mirror plates, optical scanning system and the tapered plate are configured to allow the light reflected by the row of mirror plates in the “on” direction to enter the tapered plate at the first face, be reflected by the second face, and produce a line of image pixels on the third face.
Abstract: Methods and apparatus for providing a high-resolution spatial light modulator. A spatial light modulator includes a cell that includes: a substrate portion; a first support post and a second support post, each having a top surface; and a micro mirror that includes a hinge member having a first end and a second end. The first end and second end is secured to the top surface of the first support post and the second support post, respectively. The hinge member and the support posts are completely hidden underneath the micro mirror.
Abstract: The present invention discloses a photonic waveguide that is based on natural index contrast (NIC) principle and also discloses fabrication details thereof. Such waveguide forms the basis of a class of chip-scale micro- and nano-photonic integrated circuits (PICs). The NIC method utilizes the built-in refractive index difference between two layers of dielectric thin films of two materials, created from nano-materials that are designed for optical waveguide applications. This new class of waveguides simplifies the PIC fabrication process significantly. Based on the NIC based waveguides, which by design possess multiple photonic functionalities, PICs can be fabricated for a number of photonic applications such as arrayed waveguide grating (AWG), reflective arrayed waveguide grating (RAWG), interleaver, interferometer, and electro-optic sensor.
Abstract: The invention describes an integrated-photonics arrangement, implementable in a multi-guide vertical integration structure composed from III-V semiconductors and grown in one epitaxial growth run, that allows for vertical and lateral splitting of optical signals co- or bi-directionally propagating in the common passive waveguide into plurality of the vertically integrated passive or active wavelength-designated waveguides, therefore, enabling the wavelength-designated waveguides operating in different wavelengths to be monolithically integrated onto the same substrate and connected to the shared passive waveguide.
Abstract: Methods for forming compositions comprising a single-phase rare-earth dielectric disposed on a substrate are disclosed. In some embodiments, the method forms a semiconductor-on-insulator structure. Compositions and structures that are formed via the method provide the basis for forming high-performance devices and circuits.
Abstract: A method for resetting a polarization controller includes determining that the phase magnitude is associated with a first range of phase angles and generating a first control signal having a first characteristic if the phase magnitude is increasing, and generating the first control signal having a second characteristic if the phase magnitude is decreasing. The phase magnitude associated with a second range of phase angles is determined. The first control signal having the second characteristic is generated if the phase magnitude is increasing. The first control signal having the first characteristic is generated if the phase magnitude is decreasing.
Abstract: An encapsulated device includes a micro device on a substrate, a cover bonded to the substrate thereby forming a chamber to encapsulate the micro device, and a desiccant material on the cover and in the chamber. An anti-stiction material is absorbed in the desiccant material.
Abstract: Waveguide devices and schemes for fabricating waveguide devices useful in applications requiring modulation, attenuation, polarization control, and switching of optical signals are provided. In accordance with one embodiment of the present invention, a method of fabricating an integrated optical device is provided.
Type:
Grant
Filed:
November 21, 2003
Date of Patent:
May 13, 2008
Assignee:
Optimer Photonics, Inc.
Inventors:
David W. Nippa, Steven M. Risser, Richard W. Ridgway, Tim L. Shortridge, Vincent McGinniss, Kevin Spahr
Abstract: Fundamental interconnect systems for connecting high-speed electronics elements are provided. Interconnect system has the means, which could reduce the microwave loss by reducing the effective dielectric loss and dielectric constant of the interconnect system, and increase the bandwidth of the interconnects and also reduce the signal propagation delay, respectively. Ideally, the speed of the electrical signal on the signal line can be reached to speed of the light in the air, and the bandwidth can be reached to closer to the optical fiber. The interconnect systems consists of the signal line, dielectric system with opened trench or slot filled up with the air or lower dielectric loss material, and the ground plan. The signal line proposed in this invention could be made any type of signal line configuration for example, microstripline, strip line or coplanar line. The signal line can also be made as single ended or differential pairs of any configurations.
Abstract: A micro mirror device includes a hinge supported by a substrate and a mirror plate tiltable around the hinge. The hinge is configured to produce an elastic restoring force on the mirror plate when the mirror plate is tilted away from an un-tilted position. The micro mirror device also includes a controller that can produce an electrostatic force to overcome the elastic restoring force to tilt the mirror plate from the un-tilted position to an “on” position or an “off” position. The electrostatic force can counter the elastic restoring force to hold the mirror plate at the “on” position or the “off” position.