Abstract: An optical amplifier module is disclosed. The optical amplifier module includes a housing having an interior length and an interior width generally shorter than the interior length and an electronic control board disposed within the housing. The electronic control board includes a plurality of electronically connected components. The optical amplifier module also includes a gain medium disposed in the housing in a generally circularly spiral shape, such that the gain medium has a radius of curvature approximately one half the interior width of the housing. The optical amplifier module further includes a pump laser electronically connected to the electronic control board and optically connected to the gain medium.
Abstract: A dual mode electronic amplifier controller is disclosed. The amplifier includes a first amplifier electronically connectable to an optical input signal and a second amplifier electronically connectable to an optical output signal. The first amplifier has a first output and the second amplifier has a second output. The amplifier controller further includes a microprocessor electronically connected to the first and second outputs. The microprocessor is adapted to operate in one of a first mode wherein the microprocessor compares functions of the first and second outputs and generates a first microprocessor output, and a second mode wherein the microprocessor compares the second output to a predetermined value and generates a second microprocessor output, such that, in either the first or second modes, each of the first and second microprocessor outputs is adapted to adjust electrical current to a laser.
Abstract: A controllable optical amplifier module is disclosed. The controllable optical amplifier module includes a signal line. The signal line includes an input for receiving an input signal, an output for discharging an amplified signal such that the output is optically connected to the input, a gain medium optically disposed between the input and the output, and a first tap for generating a first tapped signal such that the first tap is optically disposed between the input and the output. The controllable optical amplifier module also includes at least one pump laser having a laser output optically connected to the gain medium and an ability to adjustably alter the intensity of the amplified signal. A method of adjustably amplifying an optical signal is also disclosed.
Abstract: A method of deriving increased information from electromagnetic energy. Values of any of several spatial phase characteristics of the electromagnetic energy are determined. The determined spatial phase characteristic values are used in a manner to provide information.
Abstract: An optical amplifier module is disclosed. The optical amplifier module includes a housing having an interior length and an interior width generally shorter than the interior length and an electronic control board disposed within the housing. The electronic control board includes a plurality of electronically connected components. The optical amplifier module also includes a gain medium disposed in the housing in a generally circularly spiral shape, such that the gain medium has a radius of curvature approximately one half the interior width of the housing. The optical amplifier module further includes a pump laser electronically connected to the electronic control board and optically connected to the gain medium.
Abstract: An optical waveguide comprising a first polymeric layer and a second polymeric layer adjacent to the first polymeric layer and a method for making the optical waveguide are disclosed. The first polymeric layer has a refractive index of n1 and solubility S1 in a first solvent. The second polymeric layer has a refractive index of n2 and solubility S2 in the first solvent. In the optical waveguide, n1 ≠n2 and S1/S2 is at least 5.
Abstract: An L band optical amplifier in disclosed. The optical amplifier includes a signal line for transmitting a light signal in a first direction. The signal line has an input, an output disposed optically downstream of the input, and an amplifying gain medium optically disposed between the input and the output. The optical amplifier further includes a laser optically connected to the first amplifying gain medium and an apparatus for directing C band light generated in a second direction, opposite the first direction, into the amplifying gain medium.
Abstract: An L band optical amplifier in disclosed. The optical amplifier includes a signal line which has an input, an output disposed optically downstream of the input, and an amplifying gain medium optically disposed between the input and the output. The optical amplifier further includes a laser optically connected to the first amplifying gain medium and an apparatus for directing C band light into the amplifying gain medium.
Abstract: A system and method for suppressing light scattering in optical fiber transmission systems are disclosed. The system includes an optical fiber assembly having first and second ends and at least one blocking apparatus disposed along the fiber between the first and second ends. The method includes providing a fiber assembly having a first end and a second end; installing a blocking apparatus in the fiber assembly between the first end and the second end; and transmitting light between the first end and the second end. The fiber assembly generates Brillouin and Rayleigh scattering light in a direction opposite the direction of the transmitted light, and the blocking apparatus suppresses the Brillouin and Rayleigh scattering light.
Abstract: A multimode optical fiber includes an inner core and an outer core on the inner core having different refractive index profiles. The refractive index profile of the outer core is graded, while the refractive index profile of the inner core may be graded. The refractive index profiles have the same value at the inner core--outer core boundary.