Patents Assigned to PHPK Technologies Inc.
  • Patent number: 6968704
    Abstract: The present invention relates to methods and systems for densifying liquids, specifically the densification of cryogenic propellants. A preferred system of the present invention subcools and densifies liquid propellants by utilizing a countercurrent gas or liquid flow. The countercurrent flow preferably utilizes a gas having a lower boiling point than the propellants. A packed tower may then be used, at or above atmospheric pressure, to introduce the countercurrent flow to the propellant. This methodology avoids the costs and problems associated with subatmospheric operation. A preferred embodiment is directed toward the densification of liquid oxygen, with a similar embodiment directed toward the simultaneous densification of liquid oxygen and liquid hydrogen. Systems and methods of the present invention may also be used to densify other liquids in similar fashion.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: November 29, 2005
    Assignee: PHPK Technologies Inc.
    Inventor: Charles B. Hood
  • Patent number: 6532750
    Abstract: The present invention relates to methods and systems for densifying liquids, specifically the densification of cryogenic propellants. A preferred system of the present invention subcools and densifies liquid propellants by utilizing a countercurrent gas or liquid flow. The countercurrent flow preferably utilizes a gas having a lower boiling point than the propellants. A packed tower may then be used, at or above atmospheric pressure, to introduce the countercurrent flow to the propellant. This methodology avoids the costs and problems associated with subatmospheric operation. A preferred embodiment is directed toward the densification of liquid oxygen, with a similar embodiment directed toward the simultaneous densification of liquid oxygen and liquid hydrogen. Systems and methods of the present invention may also be used to densify other liquids in similar fashion.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: March 18, 2003
    Assignee: PHPK Technologies Inc.
    Inventor: Charles B. Hood
  • Patent number: 5697220
    Abstract: A refrigeration system includes a dewar and a refrigerator/liquefier which meets the variable demands of a superconducting magnet within the dewar. The system is sized to meet average loads over a defined duty cycle, and is variably operable to meed demands. In the preferred embodiment, a first supply of fluid circulates through a "condenser" element positioned in a dewar ullage to liquefy a separate supply of fluid in the dewar, and to refrigerate a pulsed cryogenic load therein, such as a superconducting magnet. A portion of the first supply of fluid may be diverted to refrigerate a second pulsed cryogenic load, such as magnet current leads permanently connected to the magnet. The dewar includes a cold gas vapor storage chamber separate from the dewar ullage, and the chamber is preferably located within the inner core of a solenoid superconducting magnet for compact and thermally efficient design. Responsive, independent adjustment of refrigeration to pulsed cryogenic loads is made possible.
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: December 16, 1997
    Assignee: PHPK Technologies, Inc.
    Inventors: James G. Pierce, Charles B. Hood, Sibley C. Burnett, John R. Purcell
  • Patent number: RE36332
    Abstract: A refrigeration system includes a dewar and a refrigerator/liquefier which meets the variable demands of a superconducting magnet within the dewar. The system is sized to meet average loads over a defined duty cycle, and is variably operable to meed demands. In the preferred embodiment, a first supply of fluid circulates through a "condenser" element positioned in a dewar ullage to liquefy a separate supply of fluid in the dewar, and to refrigerate a pulsed cryogenic load therein, such as a superconducting magnet. A portion of the first supply of fluid may be diverted to refrigerate a second pulsed cryogenic load, such as magnet current leads permanently connected to the magnet. The dewar includes a cold gas vapor storage chamber separate from the dewar ullage, and the chamber is preferably located within the inner core of a solenoid superconducting magnet for compact and thermally efficient design. Responsive, independent adjustment of refrigeration to pulsed cryogenic loads is made possible.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: October 12, 1999
    Assignee: PHPK Technologies, Inc.
    Inventors: James G. Pierce, Charles B. Hood, Sibley C. Burnett, John R. Purcell