Patents Assigned to Physio-Control, Inc.
  • Patent number: 10046170
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 14, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Isabelle Banville, David R. Hampton, Gregory T. Kavounas, Richard C. Nova
  • Patent number: 10039497
    Abstract: In embodiments, an external medical device is intended to care for a patient. If it receives an input that signifies that ventilation artifact is present in a signal of the patient, it transmits a corrective signal responsive to the received input. In further embodiments, a patient signal is received, which is generated from a patient while the patient is or was receiving chest compressions at a frequency Fc, and also receiving ventilations at frequency Fv. At least one filter mechanism may be applied to the patient signal to substantially remove artifacts at a) frequency Fc, b) a higher harmonic of frequency Fc, and c) a third frequency substantially equaling frequency Fc plus or minus frequency Fv, while substantially passing other frequencies between them. As a result, the patient signal can be cleaner, for diagnosing the patient's state more accurately.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: August 7, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Robert G. Walker
  • Patent number: 10004662
    Abstract: Techniques and devices for extending a piston, for example connected to a medical device such as a mechanical CPR device, to accommodate different sized patients, are described herein. In some cases, a piston of a mechanical CPR device may include an inner piston at least partially slidable into an external piston sleeve. In one aspect, an external piston spacer may be attached to an outward surface of the inner piston to extend the length of the piston. In another aspect an internal bayonet sleeve may contact one or more locking rods at various positions, enabling adjustment of the length of the inner piston. In yet another aspect, a piston adapter may be removably attached to the end of the piston. In all aspects, the change in length of the piston may be detected and used to modify movement of the piston, for example to more safely perform mechanical CPR.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 26, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Anders Jeppsson, Marcus Ehrstedt
  • Patent number: 9994315
    Abstract: Systems and methods for the use of unmanned aerial vehicles (UAVs) in medical emergencies are disclosed herein. The systems and methods include receiving at a first UAV an indication of a medical emergency and coordinating with a second UAV based on the second UAV's capabilities. The first UAV determines if the capabilities of the second UAV complement the capabilities of the first UAV based on the indicated medical emergency. The disclosed systems and methods deploy both the first and second UAVs to the medical emergency if the capabilities of the second UAV complement those of the first UAV.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 12, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Mitchell Smith, Kristina Furlan, John Daynes, Michael Arbuck, Alex Esibov, Melissa Pochop-Miller, Dennis Skelton
  • Patent number: 9987498
    Abstract: Medical devices and methods in which a user can treat a patient or monitor a parameter of the patient or both may include a housing, a patient module located within the housing that is used for treating the patient, monitoring the patient or both, and a control panel. The control panel is attached to the housing and has a first surface and a second surface and is positionable between a first position and a second position with respect to the housing. The first position exposes a user to a first surface of the control panel and the second position exposes the user to a second surface of the control panel. A first set of user controls are located on one or the other of the first surface and the second surface and are structured to allow the user to interact with the patient module.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: June 5, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventor: John C. Daynes
  • Patent number: 9981141
    Abstract: The defibrillator may include a heart rhythm detector to detect the heart rhythm of a patient, a manual mode controller structured to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode depending on an input from a human operator, a shock module to cause the defibrillator to deliver a shock to the patient according to the operating mode, and an automatic mode controller structured to, after the shock module has delivered the shock to the patient, set the external defibrillator to the synchronous shock operating mode or the asynchronous shock operating mode depending on the detected heart rhythm of the patient and without input from the human operator.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 29, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville, James W. Taylor
  • Patent number: 9981140
    Abstract: An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 29, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Patent number: 9981142
    Abstract: Appropriate cardiac therapy is determined by data sensed and analyzed by the disclosed defibrillators and other medical devices that one or both of treat and monitor a patient. The disclosed devices sense various patient physiological parameters including patient pulse and breathing data to determine whether the patient has a pulse and to determine if the patient is breathing. Depending on the analysis of the generated patient physiological data, the disclosed devices determine the appropriate therapy for the patient, which can include providing breathing assistance to the patient and providing electrotherapy and other therapies to the patient. Some of the disclosed medical devices can be wearable by the patient. The disclosed devices can include therapy modules like electrotherapy for delivering therapies to the patient while other devices monitor but do not deliver the therapies to the patient.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: May 29, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Tae H. Joo, Ronald E. Stickney, Cynthia P. Jayne, Paula Lank, Patricia O'Hearn, David R. Hampton, James W. Taylor, William E. Crone, Daniel Yerkovich
  • Patent number: 9950178
    Abstract: The presence of a cardiac pulse in a patient is determined by evaluating fluctuations in an electrical signal that represents a measurement of the patient's transthoracic impedance. Impedance signal data obtained from the patient is analyzed for a feature indicative of the presence of a cardiac pulse. Whether a cardiac pulse is present in the patient is determined based on the feature in the impedance signal data. Electrocardiogram (ECG) data may also be obtained in time coordination with the impedance signal data. Various applications for the pulse detection of the invention include detection of PEA and prompting PEA-specific therapy, prompting defibrillation therapy and/or CPR, and prompting rescue breathing depending on detection of respiration.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 24, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Ronald E. Stickney, James W. Taylor, Patricia O'Hearn, Cynthia P. Jayne, Paula Lank, David R. Hampton
  • Patent number: 9916436
    Abstract: An accessory for a host medical device that is capable of authenticating itself to the host medical device. The accessory includes an onboard facility for authenticating the accessory to the host medical device. Various embodiments of the accessory enable it to validate itself to the host medical device without the host medical device reading any stored information from the accessory.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 13, 2018
    Assignee: Physio-Control, Inc.
    Inventor: Matthew L. Bielstein
  • Patent number: 9907971
    Abstract: Embodiments are directed to a medical device, such as a defibrillator, for use with an accessory capable of collecting a parameter of a patient. The medical device is capable of at least performing a basic functionality, an advanced functionality, and of defibrillating the patient. The medical device includes an energy storage module within a housing for storing an electrical charge that is to be delivered to the patient for the defibrillating. The medical device includes a processor structured to determine whether a data set received from the accessory confirms or not a preset authentication criterion about the accessory. Although when the accessory is coupled to the housing the medical device is capable of the defibrillating and the basic functionality, the medical device is capable of the advanced functionality only when the accessory is coupled to the housing and it is determined that the preset authentication criterion is confirmed. Embodiments also include methods of operation and a programmed solution.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: March 6, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventor: Richard C. Nova
  • Patent number: 9901741
    Abstract: A wearable cardioverter defibrillator (“WCD”) system includes a support structure that can be worn by a patient, and a defibrillator coupled to the support structure. An ECG input, rendered from an ECG of the patient, may meet a primary shock criterion. One or more sensor modules are further provided, which are worn by the patient at different times. The sensor modules may monitor different physiological parameters of the patient, and transmit signals about them. The WCD system further has a multi-sensor interface to receive the transmitted signals, and a processor to determine from them whether a secondary shock criterion is met. If both the primary and the secondary shock criteria are met, the decision is to shock. The signals increase specificity of the detection, while the patient can wear different modules depending on context.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: February 27, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Fred William Chapman, Gregory T. Kavounas
  • Patent number: 9872998
    Abstract: A defibrillator system optimizes the timing and manner of applying a defibrillator charge to a patient based upon data provided to the defibrillator from a utility module or one or more external devices. A parameter module on the utility module provides the defibrillator with patient parameter information. Devices external to the utility module may provide the utility module with coaching data that the utility module may pass through to the defibrillator as a proxy to the external devices. The utility module may also provide external devices with patient data that the utility module may pass through to the external devices as a proxy to the defibrillator on a scheduled or other basis. The utility module may additionally provide a reserve of power to enable defibrillators to be used where power is unavailable and to enable defibrillators to deliver multiple charges more readily anywhere, anytime.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: January 23, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: David Dean Aoyama, Matthew Lawrence Bielstein, Barry D. Curtin, Kevin C. Drew, Mina Lim, E. Thomas McKay, Randy L. Merry, Ken Peterson
  • Patent number: 9844658
    Abstract: Technologies and implementations for a defibrillator electrode having communicative capabilities are generally disclosed.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: December 19, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Jennifer Goeman Jensen, Jennifer Elaine Hoss, Mitchell A. Smith, Kenneth J. Peterson, Maren Louise Nelson, Andres Belalcazar, Daniel W. Piraino, John Robert Knapinski, Matthew L. Bielstein, Ethan P. Albright, Jeffery S. Edwards, Paul S. Tamura
  • Patent number: 9844487
    Abstract: A method of controlling the amount of compressed gas used for driving a reciprocating apparatus for cardio-pulmonary resuscitation (CPR) comprising a valve means for controlling the provision of driving gas comprises operation of the valve means during the compression phase to stop provision of driving gas, which operation is separated in time from the venting of the driving gas from the apparatus at the end of the compression phase. Also disclosed are; a CPR apparatus operated by the method; a method of compression depth sensing.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 19, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Anders Nilsson, Peter Sebelius
  • Patent number: 9801561
    Abstract: The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 31, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Ronald Eugene Stickney, Robert G. Walker, Daniel Piraino, Isabelle Banville, Fred Chapman
  • Patent number: 9776012
    Abstract: When a defibrillator selects a dosage of energy or current to be delivered to a patient, the defibrillator selects an excitation current frequency and applies the excitation current at the selected frequency to the patient. The frequency of the excitation current is selected as a function of the dosage to be delivered. The patient's response to the excitation current at the selected frequency will accurately reflect the impedance that the defibrillator will “see” when delivering the selected dosage of energy or current.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 3, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Fred Chapman, Joseph Sullivan, Scott Schweizer
  • Patent number: 9775566
    Abstract: In embodiments, an external medical device is intended to care for a patient. If it receives an input that signifies that ventilation artifact is present in a signal of the patient, it transmits a corrective signal responsive to the received input. In further embodiments, a patient signal is received, which is generated from a patient while the patient is or was receiving chest compressions at a frequency Fc, and also receiving ventilations at frequency Fv. At least one filter mechanism may be applied to the patient signal to substantially remove artifacts at a) frequency Fc, b) a higher harmonic of frequency Fc, and c) a third frequency substantially equaling frequency Fc plus or minus frequency Fv, while substantially passing other frequencies between them. As a result, the patient signal can be cleaner, for diagnosing the patient's state more accurately.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 3, 2017
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Joseph L. Sullivan, Robert G. Walker
  • Patent number: 9770183
    Abstract: Medical devices, software and methods are provided, for making a decision as to whether to pause patient chest compression treatment in connection with administering electric shock therapy to the patient. The decision is made depending whether signal spikes identified in the ECG data are determined to be QRS complexes, or merely likely impulsive artifact caused by the chest compressions.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: September 26, 2017
    Assignee: Physio-Control, Inc.
    Inventor: Joseph L. Sullivan
  • Publication number: 20170266078
    Abstract: Resuscitation devices for performing external chest compression (ECC) and defibrillation on a person and methods using the devices are disclosed. The disclosed devices can include chest compression members and a communication module that can communicate with a remote command center. The disclosed devices can also include an optional defibrillation module that may be integrated. The devices can be coupled to a backboard and can include physiological sensors, electrodes, wheels, controllers, human interface devices, cooling modules, ventilators, cameras, and voice output devices. Methods can include defibrillating, pacing, ventilating, cooling, and performing ECC in an integrated, coordinated, and/or synchronous manner using the full capabilities of the device. Some devices include controllers executing methods for automatically performing the coordinated activities utilizing the device capabilities.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Cynthia Jayne, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, David R. Hampton, D. Craig Edwards, Joseph L. Sullivan, Steven E. Sjoquist