Abstract: Provided is a novel chalcogen-containing organic semiconductor compound having excellent carrier mobility. The compound is represented by Formula (1a) or (1b): [Chem. 1] where in Formulas (1a) and (1b), X represents S, O, or Se, and R1 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group.
Type:
Grant
Filed:
August 29, 2019
Date of Patent:
April 30, 2024
Assignees:
THE UNIVERSITY OF TOKYO, PI-CRYSTAL INC.
Abstract: Provided is a semiconductor device and a method of manufacturing the semiconductor device that is capable of improving the connection reliability between an electronic element and a substrate in a semiconductor device in which the electronic element is fixed to the substrate. The semiconductor device includes: a substrate 10 provided with wirings and wiring connection parts 12 connected to the wirings; electronic elements 20, 30, 40, and 50 electrically connected to the wiring connection parts 12 and fixed to the substrate; and a resin film 60 laminated on one surface of the substrate 10, conforming to the shapes of the electronic elements 20, 30, 40, and 50, and covering the electronic elements 20, 30, 40, and 50.
Type:
Application
Filed:
October 8, 2021
Publication date:
August 10, 2023
Applicants:
The University of Tokyo, PI-CRYSTAL INC., ORGANO-CIRCUIT INC.
Inventors:
Junichi Takeya, Kazuyoshi Watanabe, Han Nozawa, Yuichi Ono
Abstract: Provided is a novel chalcogen-containing organic semiconductor compound having excellent carrier mobility. The compound is represented by Formula (1a) or (1b): [Chem. 1] where in Formulas (1a) and (1b), X represents S, O, or Se, and R1 each independently represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, a pyridyl group, a furyl group, a thienyl group, or a thiazolyl group.
Type:
Application
Filed:
August 29, 2019
Publication date:
July 1, 2021
Applicants:
THE UNIVERSITY OF TOKYO, PI-CRYSTAL INC.
Abstract: Active matrix array devices are constituted by devices that have a function such as those of a display/light emitting device, a sensor, a memory or an actuator, and are arranged in a matrix array shape, and the expansion of usage in various fields and applications is expected. However, there is little similarity and compatibility in the forming process and materials between a device such as a display/light emitting device, a sensor, a memory, or an actuator, and a circuit portion that controls such a device in the matrix element, and therefore the device and the circuit portion are mutually restricting factors. This results in an increase in the manufacturing cost and limitation of the function. A conventional active matrix array device is manufactured by performing various process steps on the same substrate. Control circuit portions each including a transistor are formed in some of the process steps.
Abstract: A raw material solution (6), in which an organic semiconductor material is dissolved in a solvent, is supplied to a substrate (1). The solvent is evaporated so that crystals of the organic semiconductor material are precipitated. Thus, an organic semiconductor thin film (7) is formed on the substrate (1). An edge forming member (2) having a contact face (2a) on one side is used and located opposite the substrate (1) so that the plane of the contact face (2a) intersects the surface of the substrate (1) at a predetermined angle. The raw material solution (6) is supplied to the substrate (1) and formed into a droplet (6a) that comes into contact with the contact face (2a).