Abstract: A method of determining whether a subject is likely to have a condition includes measuring concentration levels of a plurality of target biomarkers in a sample obtained from the subject; comparing the measured concentration levels to respective reference concentration levels; in the event that the measured concentration level of at least one of the target biomarkers is less than its respective reference concentration level, and the measured concentration level of at least one of the target biomarkers is greater than its respective reference concentration level, providing an indication that the subject is likely to have the condition, and otherwise: providing an indication that the subject is unlikely to have the condition.
Abstract: An apparatus for collecting volatile compounds in human breath. The apparatus includes a device for discriminating between alveolar and non-alveolar portions of exhaled breath, a device for measuring volume of exhaled breath, a chamber with a piston or similar compressible device with clean internal services designed to collect a precise volume of alveolar breath, a pump to draw the exhaled breath from the chamber through at least one sorbent tube, a subsystem for introducing a clean gas into the chamber to expand it and for purging the tubing of the system, and a subsystem for selectively collecting a room air sample. A manifold is provided in the apparatus for receiving sorbent tubes and comprises an input block and output block, and a locking lever for actuating the input and output blocks linearly towards and away from each other and selectively locking them in a fully closed position.
Type:
Grant
Filed:
May 22, 2015
Date of Patent:
March 20, 2018
Assignee:
Picomole Instruments, Inc.
Inventors:
John Cormier, Chris Purves, Jacques Vautour, Denis Dufour
Abstract: An apparatus and method for rapidly and accurately identifying and quantifying analytes in a complex mixture is disclosed. The apparatus comprises an ultra-sensitive cavity-enhanced spectrometer coupled to data-collection and analysis devices. The method comprises the use of a database containing the absorption cross-sections of various analytes to numerically determine the composition of the sample.
Abstract: An apparatus and method for rapidly and accurately identifying and quantifying analytes in a complex mixture is disclosed. The apparatus comprises an ultra-sensitive cavity-enhanced spectrometer coupled to data-collection and analysis devices. The method comprises the use of a database containing the absorption cross-sections of various analytes to numerically determine the composition of the sample.