Abstract: A class of ceramic compositions according to the formula Pb(1-z)Mz(Mn1/3Sb2/3)x(ZryTi1-y)1-xO3 where M is selected to be either Sr or Ba, x is selected to be between 0.01 and 0.1, y is selected to be between 0.35 and 0.55, and z is selected to be between 0.01 and 0.10. In some embodiments of the above composition, one or more dopants is added to the compositions. The dopant(s) may be selected from the group comprising: PbO, CeO2, SnO2, Sm2O3, TeO2, MoO3, Nb2O5, SiO2, CuO, CdO, HfO2, Pr2O3, and mixtures thereof. The dopants can be added to the ceramic composition in individual amounts ranging from 0.01 wt % to up to 5.0 wt %. The preferred ceramic compositions exhibit one or more of the following electromechanical properties: a relative dielectric constant (?) of between 1200 and 2000, a mechanical quality factor (Qm) of between 1500 and 2800; a piezoelectric strain constant (d33) of between 250-450 pC/N, a dielectric loss factor (tan ?) of between 0.002-0.
Abstract: Piezoelectric ceramics of the formula Pb(1-z)Mz(Mg1/3Nb2/3)x(ZryTi1-y)1-xO3 where M can be either Sr or Ba or both, and x is between 0.3 and 0.6, y is between 0.2 and 0.5, and z is between 0.04 and 0.08. The piezoelectric ceramic is provided as a composite perovskite structure, and may additionally include materials or dopants such as: PbO, HfO2, TeO2, WO3, V2O5, CdO, Tm2O3, Sm2O3, Ni2O3, and MnO2. The piezoelectric ceramics can be used to fabricate piezoelectric elements for a wide variety of devices that can be fabricated to exhibit high power applications including miniaturized displacement elements, buzzers, transducers, ultrasonic sensors and ultrasonic generators, and the like.
Abstract: This invention relates to a piezoelectric ceramic of the formula Pb(1?z)Mz(Mg1/3Nb2/3)x(ZryTi1?y)1?xO3 where M can be either Sr or Ba or both and x is in between about 0.1 and about 0.7, y is between about 0.2 and about 0.7, and z is between about 0.02 and about 0.1 and to method for preparing the piezoelectric ceramic. The piezoelectric ceramic is provided as a composite perovskite structure. Additional materials or dopants can be added to the piezoelectric ceramic of the present invention. Example of dopants that can be added to the piezoelectric ceramic include, but are not limited to: MnO2, Ni2O3, TeO3, TeO2, MoO3, Nb2O5, Ta2O5, CoCO3, and Y2O3. The piezoelectric ceramics of the present invention can be used to fabricate piezoelectric elements for a wide variety of devices that can be fabricated to exhibit high power applications including miniaturized displacement elements, buzzers, transducers, ultrasonic sensors and ultrasonic generators, and the like.