Patents Assigned to Pilkington Group Limited
  • Patent number: 10927037
    Abstract: A method for coating glass containers provides improved tensile strength (hence improved resistance to internal pressure). The method lends itself in particular to implementation as part of a continuous production process by utilising residual heat from the bottle casting step. The use of residual heat from an existing process offer considerable environmental benefits.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: February 23, 2021
    Assignee: Pilkington Group Limited
    Inventors: Kevin David Sanderson, Deborah Raisbeck
  • Patent number: 10919800
    Abstract: Methods are disclosed for planarisation of a coated glass substrate by deposition of a silazane based layer thereon. Coated substrates according to the invention exhibit improved properties in terms of reduced roughness, lower haze and higher visible light transmission and the coated surface may be exposed to the external environment, for example as surface 1 or surface 4 of a double glazing unit. The resulting smooth surface is less susceptible to marking and scratch damage, and offers enhanced surface energy (improved hydrophobicity).
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: February 16, 2021
    Assignee: Pilkington Group Limited
    Inventors: Simon James Hurst, Karikath Sukumar Varma
  • Patent number: 10917945
    Abstract: An electrical connector for connecting to an electrical component in or on a glazing, comprising at least one electrical conductor having first and second ends; a layer at least partly covering the at least one electrical conductor and located between the first and second ends, wherein the layer comprises a flat region having a first surface for bonding to a glazing via an adhesive layer and having a second surface for bonding to a flange of an aperture via an adhesive bead and having at least two straight sides and a discontinuity arranged in each of the at least two straight sides so that in use mounted on a glazing the discontinuity forms a receptacle for receiving an adhesive bead to form a seal against water ingress along each of the two straight sides.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: February 9, 2021
    Assignee: PILKINGTON GROUP LIMITED
    Inventor: Detlef Baranski
  • Patent number: 10906694
    Abstract: A collapsible crate and a method for synchronizing a method of assembling a collapsible crate are provided. The collapsible crate comprising a base, a first panel, a second panel, and a band style fastener. The first panel and the second panel are at least partially disposed within gaps between stringers of the base. The band style fastener is disposed about a portion of the base and a portion of one of the first panel and the second panel. The band style fastener secures the one of the first panel and the second panel to the base. The first panel and the second panel at least partially disposed in the base facilitates a transition fit therebetween. The collapsible crate is compact when the crate is collapsed and decreases a cost of the crate.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 2, 2021
    Assignee: Pilkington Group Limited
    Inventors: Justin Sugar, Robert Langham
  • Patent number: 10894391
    Abstract: A laminated glazing comprising, a first ply of a glazing material, a second ply of a glazing material, a film having an electrically conductive coating, the film being located between the first ply and the second ply, and a first busbar in electrical contact with the electrically conductive coating, the first busbar comprising an expansion portion, the expansion portion comprising a bridging busbar portion or a gap in the first busbar. Methods for producing the laminated glazing are also described.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: January 19, 2021
    Assignee: PILKINGTON GROUP LIMITED
    Inventors: Mark Andrew Chamberlain, Leigh Francis Mellor, Hartwig Schneider
  • Patent number: 10882780
    Abstract: A glazing comprises a glass substrate having an enamel layer adhered to at least a first surface portion, the enamel comprising 20 to 80 wt % frit and 10 to 50 wt % inorganic pigment. The thickness of the enamel layer is 2 ?m to 50 ?m, and the inorganic pigment has an infra-red reflectance such that the infra-red reflectance of the first portion of the glass substrate surface is 37% or higher over a region in the wavelength range 800 nm to 2250 nm. The glazing may be laminated, and may be a vehicle windscreen. A process for producing the glazing involves applying ink to a glass substrate, curing the ink thereby producing an enamel adhered to the glass substrate, and shaping the glass substrate by heating to a temperature above 570° C. The preferred inorganic pigments are of the Fe and/or Cr type in spinel, haematite or corundum crystal form.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 5, 2021
    Assignee: PILKINGTON GROUP LIMITED
    Inventors: Angelo Conti, Giovanni Gagliardi, Leandro Grassia
  • Publication number: 20200412365
    Abstract: The present invention relates to a switching device comprising at least one (a first) sheet of glazing material having a first major surface and an opposing second major surface, a switch attached to the first major surface of the first sheet of glazing material, and a sensor assembly facing the second major surface of the first sheet of glazing material. The switch comprises a movable portion operatively coupled with the sensor assembly such that upon operation of the switch, the movable portion moves from a first position to a second position and the movement of the movable portion from the first position to the second position is detectable by the sensor assembly. The switching device may be part of a window or door for a building or a vehicle.
    Type: Application
    Filed: December 21, 2018
    Publication date: December 31, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventor: STEPHEN ROLAND DAY
  • Publication number: 20200383178
    Abstract: An electrical connector for connecting to an electrical component in or on a glazing, comprising at least one electrical conductor having first and second ends; a layer at least partly covering the at least one electrical conductor and located between the first and second ends, wherein the layer comprises a flat region having a first surface for bonding to a glazing via an adhesive layer and having a second surface for bonding to a flange of an aperture via an adhesive bead and having at least two straight sides and a discontinuity arranged in each of the at least two straight sides so that in use mounted on a glazing the discontinuity forms a receptacle for receiving an adhesive bead to form a seal against water ingress along each of the two straight sides.
    Type: Application
    Filed: November 26, 2018
    Publication date: December 3, 2020
    Applicant: Pilkington Group Limited
    Inventor: Detlef BARANSKI
  • Patent number: 10856367
    Abstract: An electrical connector for a glazing including a first connector foot and a second connector foot for soldering to the glazing, and a bridge portion comprising sheet metal having a thickness in a specified range linking the first connector foot and second connector foot. The first connector foot and the second connector foot each are shaped so that most of the perimeter of each foot is curved, the first connector foot and the second connector foot are connected to the bridge portion by a first neck portion and a second neck portion respectively, and the first neck portion and the second neck portion each have a narrower width than a width of the bridge portion.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: December 1, 2020
    Assignee: PILKINGTON GROUP LIMITED
    Inventors: Michael Lyon, Jonathan Mark Williams
  • Patent number: 10837108
    Abstract: A CVD process for depositing a silica coating is provided. The process includes providing a float glass ribbon in a float glass manufacturing process. The process also includes forming a gaseous mixture including a silane compound, oxygen, a fluorine-containing compound, and a radical scavenger. The gaseous mixture is directed toward and along the float glass ribbon and is reacted over the float glass ribbon to form the silica coating thereon. The silica coating comprises silicon dioxide.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: November 17, 2020
    Assignee: Pilkington Group Limited
    Inventors: Douglas Martin Nelson, Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 10822268
    Abstract: A splash screen, and a process for making a splash screen, comprising a glass sheet, the glass sheet comprising, a substrate of soda lime silica glass having a coating deposited on at least at least a first surface, the coating comprising a corrosion-protection layer deposited directly on the first surface of the substrate, the corrosion-protection layer having a thickness in the range 24 nm to 125 nm and comprising pyrolytically deposited silica with intentional doping of 7 atom % or lower. The splash screen provides reduced moisture induced corrosion of the glass surface.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: November 3, 2020
    Assignee: Pilkington Group Limited
    Inventors: Simon James Hurst, Anna Louise Colley, Peter Michael Harris, Kieran James Cheetham
  • Patent number: 10822269
    Abstract: A method of manufacture of a coated glazing includes the following steps in sequence a) providing a transparent glass substrate, b) etching a surface of the substrate with an acidic gas, and c) directly or indirectly coating said surface with at least one layer based on a transparent conductive coating (TCC) and/or at least one layer based on a material with a refractive index of at least 1.75.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 3, 2020
    Assignee: Pilkington Group Limited
    Inventors: Kevin David Sanderson, Neil McSporran, David Alan Strickler, Leo James Pyrah
  • Publication number: 20200331800
    Abstract: A method of manufacture of a coated glazing includes the following steps in sequence a) providing a transparent glass substrate, b) etching a surface of the substrate with an acidic gas, and c) directly or indirectly coating said surface with at least one layer based on a transparent conductive coating (TCC) and/or at least one layer based on a material with a refractive index of at least 1.75.
    Type: Application
    Filed: December 20, 2019
    Publication date: October 22, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventors: KEVIN DAVID SANDERSON, NEIL MCSPORRAN, DAVID ALAN STRICKLER, LEO JAMES PYRAH
  • Publication number: 20200332593
    Abstract: The present invention relates to a multifunctional glazing unit suitable for generating electricity, to a method of preparing same and use thereof, said multifunctional glazing unit comprising a first sheet of glazing material comprising a first face and a second face, a second sheet of glazing material comprising a first face and a second face, a photovoltaic portion, and a reflecting element, wherein the first sheet of glazing material and the second sheet of glazing material are separated by a cavity, the second faces of each sheet of glazing material face towards the cavity, the photovoltaic portion and the reflecting element are each positioned between the first sheet of glazing material and the second sheet of glazing material, and wherein the photovoltaic portion comprises a transparent region, a bi-facial region, and at least one photovoltaic element.
    Type: Application
    Filed: November 13, 2018
    Publication date: October 22, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventor: MARCEL RIBBERINK
  • Patent number: 10780673
    Abstract: A light emitting diode display is described including inner and outer panes of glass. The inner pane of glass has first and second major surfaces wherein a visible light reflection from the second major surface is 7.6% or less. The outer pane of glass is in a parallel relationship with the inner pane of glass. One or more light emitting diodes (LEDs) and at least one (a first) interlayer is provided between the inner and outer panes of glass. The first interlayer encapsulates the one or more LEDs. A conductive coating may be formed over the first major surface of the inner pane of glass and at least one (a first) of the one or more LEDs may be provided on the conductive coating, the first light emitting diode being in electrical communication with the conductive coating. The conductive coating may be transparent to visible light.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: September 22, 2020
    Assignee: Pilkington Group Limited
    Inventors: Srikanth Varanasi, Neil McSporran
  • Publication number: 20200296805
    Abstract: The invention concerns a conductive pattern sheet for use in a glazing, comprising a substrate, a conductive pattern arranged on the substrate, wherein the conductive pattern comprises first and second busbars arranged at opposing edges of the conductive pattern for connecting a power supply thereto, a plurality of conductive lines each conductive line arranged between the first and second busbars, wherein at least a portion of the plurality of conductive lines is configured to have a transition region wherein a change from a first resistance per unit length (R1) at a first end of the transition region to a second resistance per unit length (R2) at a second end of the transition region occurs over a predetermined length (L) of the transition region wherein a rate of change of resistance per unit length (R1-R2)/L is from 1 to 16,000 ohms per centimetre squared and the substrate is a polymer sheet.
    Type: Application
    Filed: November 30, 2018
    Publication date: September 17, 2020
    Applicant: Pilkington Group Limited
    Inventor: Leigh Francis MELLOR
  • Publication number: 20200269815
    Abstract: A laminated glazing and related detection method is described. The laminated glazing has a detecting device to determine the presence of mist on a surface of the glazing and/or the presence of an object contacting or proximal the glazing. The detecting device including transmitter means for emitting a beam of electromagnetic radiation, detector means for detecting electromagnetic radiation and a target for non-specular reflection of first beam of electromagnetic radiation. The transmitter means is configured to emit the beam of electromagnetic radiation to illuminate the target such that electromagnetic radiation reflects therefrom to illuminate a region of a major surface of the glazing. At least a portion of the electromagnetic radiation reflected off the region is detectable by the detector means to provide a detection signal for detecting mist on the region and/or the presence of an object contacting or proximal the glazing. A detection method is also described.
    Type: Application
    Filed: September 11, 2018
    Publication date: August 27, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventor: STEPHEN ROLAND DAY
  • Publication number: 20200262748
    Abstract: A method of making a reflective coated glass article includes providing a glass substrate. A first gaseous mixture is formed. The first gaseous mixture includes a silane compound and inert gas. The first gaseous mixture is delivered to a location above a major surface of the glass substrate to deposit a first coating layer directly on the major surface of the glass substrate. The first coating layer is deposited at a thickness of 5-50 nm. A second gaseous mixture is formed. The second gaseous mixture includes a silane compound, a radical scavenger and molecular oxygen. The second gaseous mixture is delivered to a location above the first coating layer. A second coating layer is deposited at a thickness of 5-50 nm over the first coating layer. The coated glass article exhibits a total visible light reflectance (Illuminant D65, ten degree observer) of 45% or more from a coated side of the coated glass article.
    Type: Application
    Filed: October 5, 2018
    Publication date: August 20, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventors: SRIKANTH VARANASI, NEIL MCSPORRAN, MATTHEW BARRINGTON MAHONEY
  • Publication number: 20200231493
    Abstract: The present invention relates to a process for producing a coated glass substrate, the process comprising providing a glass substrate having at least one surface, the surface having deposited thereon a layer of a transparent conductive material, providing a coating composition comprising a polysilazane, contacting the surface of the transparent conductive material with the coating composition and curing the coating composition to form a coating layer on the surface of the transparent conductive material the coating layer comprising silica, and to architectural and automotive glazing comprising coated glass substrates obtained using the process.
    Type: Application
    Filed: September 9, 2016
    Publication date: July 23, 2020
    Applicant: PILKINGTON GROUP LIMITED
    Inventors: SIMON JAMES HURST, MARK JOHN GLYNN, SIMON PAUL OLIVER
  • Patent number: 10683231
    Abstract: Glasses are disclosed having a composition comprising the following oxides (in weight %): SiO2 61 to 70%, Al2O3 0 to 9%, Na2O 10 to 13%, K2O 0 to 1%, MgO 2 to 6%, CaO 6 to 16%, SrO 0 to 1%, ZrO2 0 to 1%, TiO2 2 to 15%, the glasses having a strain point greater than 570° C. The glasses have good dimensional stability at high temperatures, making them suitable for fire protection glazings and substrates which are processed at elevated temperatures, e.g. substrates for display panels, information storage discs and semiconductor devices, including photovoltaic cells. Physical properties of the glasses, such as thermal expansion coefficient, density and refractive index, are disclosed, as are the melting and liquidus temperatures. The glasses are suitable for manufacture by the float process, yielding flat glass in the form of sheets.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: June 16, 2020
    Assignee: Pilkington Group Limited
    Inventors: Martin James Horsley, Shona Taylor