Abstract: A device to stimulate a scalp comprises an array of stimulating elements, the stimulating elements arranged along a circumference of at least one wheel, the wheel adapted to roll over the scalp. A method of treating/preventing a hair-condition comprises: subjecting the scalp to at least 200 distinct electrode-scalp contact events during a time-interval of at most one minute and dividable into 5 non-overlapping equal-duration sub-intervals covering the time-interval, method performed such that i. for at least a majority of the electrode-scalp contact events, no electrode of the event enters into the dermis; ii. a duration of each electrode contact event is at most 100 milliseconds; and iii. for each electrode contact event, an electrical current flows between the electrode and the scalp so as to deposit electrode-released ions of a first metal or of a second metal on the scalp, thereby forming a respective metal-ion-deposition island on the user's scalp.
Abstract: Embodiments of the invention relate to a composition, method and kit for producing galvanic cells upon application of the composition to the skin. In some embodiments, the composition comprises encapsulated half-galvanic cell units (e.g. individual and/or autonomous half-galvanic cell units) having the same ox/red potential (E°), wherein each half-galvanic cell unit comprises metal particles in the range of nano- to micro size or a mixture thereof, suspended within an aqueous solution of soluble electrolytic salt of same metal and wherein each half-galvanic cell unit is encapsulated by internal layer(s) made of hydrophilic metal (including silicon) oxide nanoparticles and external layer(s) made of hydrophobic metal (including silicon) oxide nanoparticles. The composition is useful for preventing and/or treating alopecia or for enhancing hair growth.
Abstract: A method of treating or preventing a hair-condition of a user comprising: subjecting the user's scalp to at least 200 distinct electrode-scalp contact events during a time-interval of at most one minute and dividable into 5 non-overlapping equal-duration sub-intervals covering the time-interval, method performed such that i. for at least a majority of the electrode-scalp contact events, no electrode of the event enters into the dermis; ii. a duration of each electrode contact event is at most 100 milliseconds; and iii. for each electrode contact event, an electrical current flows between the electrode and the scalp so as to deposit electrode-released ions of a first metal or of a second metal on the scalp, thereby forming a respective metal-ion-deposition island on the user's scalp.
Abstract: Embodiments of the invention relate to a composition, method and kit for producing galvanic cells upon application of the composition to the skin. In some embodiments, the composition comprises encapsulated half-galvanic cell units (e.g. individual and/or autonomous half-galvanic cell units) having the same ox/red potential (E°), wherein each half-galvanic cell unit comprises metal particles in the range of nano- to micro size or a mixture thereof, suspended within an aqueous solution of soluble electrolytic salt of same metal and wherein each half-galvanic cell unit is encapsulated by internal layer(s) made of hydrophilic metal (including silicon) oxide nanoparticles and external layer(s) made of hydrophobic metal (including silicon) oxide nanoparticles. The composition is useful for preventing and/or treating alopecia or for enhancing hair growth).
Abstract: A method of treating or preventing a hair-condition of a user comprising: subjecting the user's scalp to at least 200 distinct electrode-scalp contact events during a time-interval of at most one minute and dividable into 5 non-overlapping equal-duration sub-intervals covering the time-interval, method performed such that i. for at least a majority of the electrode-scalp contact events, no electrode of the event enters into the dermis; ii. a duration of each electrode contact event is at most 100 milliseconds; and iii. for each electrode contact event, an electrical current flows between the electrode and the scalp so as to deposit electrode-released ions of a first metal or of a second metal on the scalp, thereby forming a respective metal-ion-deposition island on the user's scalp.