Abstract: Methods and apparatuses for facilitating localized nuclear fusion reactions in a globally cold deeply screened fuel source are disclosed, where the volume of cold fuel is much larger than that of hot fuel participating in fission reactions, maintaining structural integrity. Such a deeply screened environment may facilitate the combination of shell and conduction electrons and plasma channels created from external x-ray and/or gamma irradiation. Deeply screened fuel nuclei can tunnel at lower energies, and can much more effectively scatter at high angles, leading to increased tunneling probabilities. Local “hot” fusion conditions may be created by providing neutral hot particles (e.g., hot neutrons) that are substantially more effective at high angle scattering off charged fuel nuclei and can deliver around a half of their kinetic energy in one collision to result in a hot fuel nucleus. Such methods and apparatuses may have various applications, such as heat or medical isotope production.
Abstract: Nuclear fusion processes with enhanced rates may be realized by providing energetic electrons in an environment containing a suitable fuel gas, a liquid fuel source, a solid fuel source, a plasma fuel source, or any combination thereof. The fuel source may be deuterium, tritium, a combination thereof, or any fuel source capable of creating deeply screened and/or neutral nuclei when exposed to energetic electrons. Under proper conditions, at least some of the deeply screened and/or neutral nuclei fuse with other nuclei. Neutral versions of deuteron and/or triton nuclei may be created by bringing neutrons with certain energy levels (e.g., around 3 MeV, but optionally less or much less than 3 MeV) into interaction with other neutrons, forming neutral versions of deuterons and/or tritons. Such processes may be used for power generation, heat production, nuclear waste remediation, material creation, and/or medical isotope production, for example.
Type:
Application
Filed:
March 9, 2016
Publication date:
September 14, 2017
Applicants:
PineSci Consulting, NASA Glenn Research Center
Inventors:
Vladimir Pines, Marianna Pines, Bruce Steinetz, Arnon Chait, Gustave Fralick, Robert Hendricks, Paul Westmeyer