Patents Assigned to Pirelli Cables and Systems LLC
  • Patent number: 6870995
    Abstract: Optical fiber cable with a central strength member structure and with four or five buffer tubes each loosely receiving optical fiber ribbons in a stack and is disposed around and contacting the strength member. The optical fiber count is in excess of 1000 and the fill factor is not greater than 85% in a two inch duct. Each buffer tube contacts adjacent buffer tubes, and the buffer tubes are encircled by a jacket. Optionally, spaces bounded by pairs of buffer tubes and the jacket have optical fibers therein and can also include flexible longitudinal strength members and/or water blocking filaments. Preferably, the strength member structure and/or the buffer tubes are encircled by a water blocking tape. The optical fiber ribbons in the stacks can include different numbers of fibers, and hence, can have different width.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: March 22, 2005
    Assignee: Pirelli Cables and Systems LLC
    Inventors: J. Peter Johnson, Robert S. Aull, Mike Petryszak
  • Patent number: 6569937
    Abstract: A conducting polymer composite that is crosslinked comprising a semicrystalline polymer minor phase with conducting filler material dispersed therein in an amount sufficient to generate a continuous conductive network in the minor phase, and which is mixed with major phase polymers, the materials being selected such that the minor phase and major phases will not engage in electrostatic interactions that promote miscibility. The minor phase being dispersed in the major phase in an amount sufficient to generate a continuous conductive network in the composite material. The composite material is crosslinked by physical or chemical means. The crosslinked conducting polymer composite having a reduced amount of conducting filler while supporting a continuous conductive network in the crosslinked polymer composite.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: May 27, 2003
    Assignee: Pirelli Cables and Systems, LLC
    Inventors: Stephen H. Foulger, Jeffrey M. Quinn, Thierry T. Trial
  • Patent number: 6506492
    Abstract: A conductive polymer composite material for semiconductive jackets for cables which has a significant reduction in conductive filler content while maintaining the required conductivity and mechanical properties specified by industry. Materials and processing approaches are selected to reduce the percolation threshold of the conductive filler in the composite, while balancing the material selection with the industry-required mechanical properties of the semiconductive jacket. The semiconductive jacket material comprises a minor phase material which is a semicrystalline polymer; a conductive filler material dispersed in the minor phase material in an amount sufficient to be equal to or greater than an amount required to generate a continuous conductive network in the minor phase material; and a major phase material which is a polymer which when mixed with the minor phase material will not engage in electrostatic interactions that promote miscibility.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: January 14, 2003
    Assignee: Pirelli Cables & Systems, LLC
    Inventor: Stephen H. Foulger
  • Patent number: 6459837
    Abstract: An optical fiber cable has a core with a bore which loosely contains optical fibers and includes a single strength member unit preferably embedded in an outer jacket which surrounds the core. The single strength member unit allows for relative ease of bending of the cable in directions other than the bending directions in the plane of minimum bending energy for the cable, such as bending in the plane of maximum bending energy (MAX-BP) for the cable, and provides that the neutral surface associated with bending of the cable in the MAX-BP is outside the bore core and within the outer jacket. The single strength member unit, which is at least one strength member, furthermore provides tensile strength and antibuckling properties to the cable during storage and in expected installations, including an aerial installation. The outer jacket is releasably coupled to the core to provide ease of access to the optical fibers contained within the core bore.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 1, 2002
    Assignee: Pirelli Cables and Systems LLC
    Inventors: Jon Fitz, Ben Wells, Jin Liu, John Smith
  • Patent number: 6417265
    Abstract: A conducting polymer composite that is crosslinked comprising a semicrystalline polymer minor phase with conducting filler material dispersed therein in an amount sufficient to generate a continuous conductive network in the minor phase, and which is mixed with major phase polymers, the materials being selected such that the minor phase and major phases will not engage in electrostatic interactions that promote miscibility. The minor phase being dispersed in the major phase in an amount sufficient to generate a continuous conductive network in the composite material. The composite material is crosslinked by physical or chemical means. The crosslinked conducting polymer composite having a reduced amount of conducting filler while supporting a continuous conductive network in the crosslinked polymer composite.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: July 9, 2002
    Assignee: Pirelli Cables and Systems LLC
    Inventor: Stephen H. Foulger
  • Patent number: 6370303
    Abstract: An optical fiber cable has a jacket of flame retardant and ultraviolet stabilized plastic and meets the requirements for both outdoor and indoor use. The jacket has two longitudinal portions interconnected by an intermediate longitudinal portion of a thickness less than the thickness of the two portions. One of the two portions contains a longitudinally extending strength member of sufficient tensile strength to support the cable when the cable is suspended outdoors between relatively widely spaced supports. The other of the two portions has a longitudinally extending bore which contains at least one tightly buffered, longitudinally extending optical fiber and can also contain a flexible, longitudinally extending strength member. When the cable is suspended outdoors between support, the intermediate jacket portion has sufficient strength to prevent separation of the strength member portion from the optical fiber portion.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: April 9, 2002
    Assignee: Pirelli Cables and Systems LLC
    Inventors: Jon Fitz, Roger Vaughn
  • Patent number: 6337367
    Abstract: An improved silane cross-linked insulation material, a method of making, and a non-shielded electrical power cable including such insulation material which has both weathering and track resistant properties is disclosed comprising (a) a linear low density polyethylene base resin, (b) a black masterbatch comprising a conductive carbon black and a polymer, (c) an antioxidant and (d) an ultraviolet ray inhibitor. The insulation material meets Federal Aviation Administration technical requirements for airport lighting applications.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: January 8, 2002
    Assignee: Pirelli Cables and Systems, LLC
    Inventor: Kyle Edward Cope
  • Patent number: 6331353
    Abstract: A strand filling compound for electrical cables, and cables including such a compound, which prevents migration of water lengthwise of the stranded wires of the conductor of the cable. The strand filling compound has a low conductive filler content without reducing the level of conductivity of the compound and is readily pumpable at temperatures above about 100° C. The strand filling compound is provided by employing an immiscible polymer blend containing conductive filler located primarily in one phase, the immiscible polymer blend being comprised of a low molecular weight polymer and a second polymer, preferably an adhesive EVA. Preferably an adhesive extender which is miscible with the low molecular weight polymer, and fine particles of a material admixed with the filling compound and/or provided as a thin layer of fine particles of a material applied over the filling compound which swells when it absorbs water are also included in the filling compound.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: December 18, 2001
    Assignee: Pirelli Cables and Systems LLC
    Inventor: Stephen H. Foulger
  • Patent number: 6315956
    Abstract: An electrochemical sensor which is tailored for sensitivity to specific chemical analytes by selecting proper constituents. The electrochemical sensor is comprised of an immiscible polymer blend of at least two polymers in which a conductive filler is dispersed in one of the polymers of the blend through a multiple percolation approach to compounding. When in the presence of a chemical analyte which is in either a liquid or vapor phase, one phase of the dual immiscible polymer blend swells, effecting a decrease in the conductivity, or increase in resistivity, of the polymer blend. The electrochemical sensor is reversible in that when the chemical analyte evaporates or is removed, the polymer blend returns to its original conductivity.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: November 13, 2001
    Assignee: Pirelli Cables and Systems LLC
    Inventor: Stephen H. Foulger
  • Patent number: 6314713
    Abstract: A characteristic feature on a generally longitudinal member is detected as the member is longitudinally advanced on a path extending from a first position to a second position. Based on the detection of the feature on the member and monitoring of the advance of the member on the path, indicia can be applied to a desired position on the member. The detected feature can be an S-Z reversal existing or created on a strand of S-Z stranded optical fiber buffer tubes included in an optical fiber cable which is undergoing cable manufacture along a cabling line. Intensity data values representative of an optical image sample of the strand with the S-Z reversal feature, where the image sample is obtained by an optical radiation detector coupled to the path, are processed for identifying the S-Z reversal feature on the strand.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: November 13, 2001
    Assignee: Pirelli Cables & Systems, LLC
    Inventors: Jonathan G. Fitz, Stephen Richard McNeill
  • Patent number: 6317540
    Abstract: An optical fiber or electrical power cable with at least one electrochemical chemical analyte sensor which includes a conductive polymer which extends longitudinally along the length of the cable. The polymer has electrical properties which undergo a reversible change when in contact with a chemical analyte. The conductive polymer can be a conductive polymer composite including an immiscible polymer blend of at least two polymers and a conductive filler which is dispersed in one of the polymers of the blend through a multiple percolation process.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: November 13, 2001
    Assignee: Pirelli Cables & Systems, LLC
    Inventors: Stephen H. Foulger, James R. Curley
  • Patent number: 6292611
    Abstract: An optical fiber cable includes a central strength or structural member, buffer tubes of the desired flexibility are S-Z wound around the central member with a predetermined lay, preferably with alternating single turn S-Z lays and the buffer tubes loosely receive optical fiber ribbon stacks, the pitch of the twist being selected to provide a predetermined ratio of the pitch of the buffer tube lay. The wall thickness of the buffer tubes is selected to provide the desired buffer tube strength and crush resistance, and the diameters of the buffer tubes bores are selected in relation to the size of the optical fiber ribbon stacks so as to provide a predetermined clearance. The clearance C is between about 1 mm and about 2 mm with the relation: C=(TI2−WR2)½−HR Where TI is the inner diameter of the tube, WR is the width of said stack and HR is a thickness of the stack.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: September 18, 2001
    Assignee: Pirelli Cables and Systems LLC
    Inventors: Richard Chamberlain, Rodney J. Pierce, Ben Wells, Roger Vaughn
  • Patent number: 6284832
    Abstract: A conducting polymer composite that is crosslinked comprising a semicrystalline polymer minor phase with conducting filler material dispersed therein in an amount sufficient to generate a continuous conductive network in the minor phase, and which is mixed with major phase polymers, the materials being selected such that the minor phase and major phases will not engage in electrostatic interactions that promote miscibility. The minor phase being dispersed in the major phase in an amount sufficient to generate a continuous conductive network in the composite material. The composite material is crosslinked by physical or chemical means. The crosslinked conducting polymer composite having a reduced amount of conducting filler while supporting a continuous conductive network in the crosslinked polymer composite.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: September 4, 2001
    Assignee: Pirelli Cables and Systems, LLC
    Inventors: Stephen H. Foulger, Jeffrey M. Quinn, Thierry T. Trial
  • Patent number: 6236789
    Abstract: A composite cable for conveying electrical energy and optical signals from a source or sources thereof to electrically energized units which process the optical signals. The cable has one or more buffer tubes, each buffer tube encircling at least two optical fibers for supplying optical signals to at least two of the units, each unit having electrical current and voltage requirements. The cable has a layer of S-Z stranded electrically insulated conductors around the buffer tube or tubes, and pairs of conductors are selected in size to safely supply the current and voltages required by at least two units. The number of pairs of conductors is less than the number of active optical fibers which excludes conductor spares. Preferably, the buffer tubes are S-Z stranded. The cable also includes a strength member and an outer plastic jacket encircling the buffer tubes, the conductors and the strength member.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: May 22, 2001
    Assignee: Pirelli Cables and Systems LLC
    Inventor: Jonathan G. Fitz
  • Patent number: 6197219
    Abstract: A conductive polymer composite material comprises: a minor phase material comprising a semicrystalline polymer; a conductive filler material dispersed in said minor phase material in an amount sufficient to be equal to or greater than an amount required to generate a continuous conductive network in said minor phase material; and a major phase material, said major phase material being a polymer which when mixed with said minor phase material will not engage in electrostatic interactions that promote miscibility, said major phase material having said minor phase material dispersed therein in an amount sufficient to be equal to or greater than an amount required to generate a continuous conductive network in said major phase material, forming a (semi)conductive ternary composite having distinct co-continuous phases.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: March 6, 2001
    Assignee: Pirelli Cables and Systems LLC
    Inventor: Stephen H. Foulger
  • Patent number: 6137936
    Abstract: An optical fiber cable has a core with a bore which loosely contains optical fibers and includes a single strength member embedded in an outer jacket which surrounds the core. The strength member allows for relative ease of bending of the cable in directions other than the bending directions in the plane of minimum bending energy for the cable, such as bending in the plane of maximum bending energy (MAX-BP) for the cable, and provides that the neutral surface associated with bending of the cable in the MAX-BP is outside the bore core and within the outer jacket. The single strength member furthermore provides tensile strength and antibuckling properties to the cable during storage and in expected installations, including an aerial installation. The outer jacket is releasably coupled to the core to provide ease of access to the optical fibers contained within the core bore.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: October 24, 2000
    Assignee: Pirelli Cables and Systems LLC
    Inventors: Jon Fitz, Ben Wells, Jin Liu, John Smith