Abstract: A modular, expandable, self-regulating watering system for burial in planters, which do not have access to water pipes nearby for use in watering plants continuously with on the amount of water the plant needs and which can be refilled by relatively infrequent visits. The system is comprised of a plurality of hollow sections each of which has two upper ports and two lower ports, unless there are only two sections in which case only one upper port and one lower port is needed on each section. One section has a fill pipe that extends above the soil level. One section has an air port at the top thereof, or close to the top, which is coupled to an air tube, which is plugged at the other end with a hydrophilic sensor. Expansion sections can be added or subtracted to make the system larger or smaller. All sections are coupled together at their upper ports by flexible hose or tubing, and are coupled together by their lower ports by flexible hose or tubing.
Abstract: A self-regulating, automatic watering planter comprised of an inner shell and outer shell with a snap-fit engagement to form a reservoir for water between the walls of the inner and outer shells. The inner shell has small holes in the bottom thereof to allow water to enter soil contained in the inner shell. An airtight seal between the inner and outer shells creates a vacuum at the top of the reservoir as the water seeps through the holes and the water level drops. The water in the walls provides hydrostatic pressure that drives the water through the inlet holes. The water stops when the vacuum reaches a sufficient level to counteract the hydrostatic pressure. An air tube coupled to the air space on top of the reservoir and having a hydrophilic polyethylene sensor blocking one end is buried in the soil.
Abstract: An improved self controlled watering planter device of the type utilizing a porous moisture sensor, an air-tight fluid reservoir and a membranous fluid inlet port on the interior bottom of the device including concentric annular ridges and a solid circular disk for inhibiting the interference of plant roots with the fluid inlet port. The improved device further includes baffle structures to inhibit debris from fouling the bottom portion of the inlet port, an interiorally mounted moisture sensing unit and an inward draining niche surrounding the fluid reservoir fill port.