Patents Assigned to Plasma Processes
-
Patent number: 11390960Abstract: A structure which is resistant to corrosion at high temperatures comprises a layer of ruthenium and/or ruthenium alloy and a layer of a refractory metal having a high strength at high temperatures, such as rhenium. Further, the structure may include a layer of ceramic such as zirconia or hafnia on the exposed face of the ruthenium layer. Alternative embodiments of the present invention include a catalyst formed from a low strength support structure with a first metal layer and a second ruthenium catalytic layer on top of the first metal layer. Another alternative embodiment of the present invention includes the formation of high purity ruthenium electrodes that are resistant to corrosion at high temperatures.Type: GrantFiled: September 28, 2017Date of Patent: July 19, 2022Assignee: Plasma Processes, LLCInventors: Timothy N. McKechnie, Anatoliy Shchetkovskiy
-
Patent number: 10106902Abstract: This invention provides an electrolyte salt for use in an electrodeposition process for depositing Zirconium metal on a thin foil substrate. The prior art electrochemical process causes a reaction between a uranium substrate and ZrF4 species in the electrolyte that causes the formation of UFx at the substrate surface that prevents the formation of a dense uniform zirconium coating. This problem is solved by using an electrolyte salt in an electrodeposition process consisting of lithium fluoride (LiF) in a concentration ranging between about 11.5 molar percent and about 61 molar percent and one or more salts selected from the group consisting of sodium fluoride (NaF), potassium fluoride (KF), cesium fluoride (CsF), or cesium chloride (CsCL). Zirconium is added to the electrolyte salt through an addition of zirconium fluoride (ZrF4) in the range of about 1 to about 5 mass percent (w/w %). The Zr coating is of at least 98% pure Zr with a density of at least 98%.Type: GrantFiled: March 21, 2017Date of Patent: October 23, 2018Assignee: Plasma Processes, LLCInventors: Alexander Smirnov, Scott O'Dell, Anatoliy Shchetkovskiy
-
Patent number: 7615097Abstract: Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.Type: GrantFiled: October 6, 2006Date of Patent: November 10, 2009Assignee: Plasma Processes, Inc.Inventors: Timothy N. McKechnie, Leo V. M. Antony, Scott O'Dell, Chris Power, Terry Tabor
-
Publication number: 20080202288Abstract: Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.Type: ApplicationFiled: October 6, 2006Publication date: August 28, 2008Applicant: Plasma Processes, Inc.Inventors: Timothy McKechnie, Leo Antony, Scott O'Dell, Chris Power, Terry Tabor
-
Publication number: 20070207338Abstract: A method for fabricating and the resulting x-ray target comprising metal deposited on an electrically-conductive base member by electrodeposition from a molten salt electrolyte is claimed. The method comprises submerging the base member in a molten salt electrolyte bath. The base member acts as a cathode and anodes of target material metals are activated by electrical circuitry to deposit a target layer onto the base member. The electrodeposition method results in an exceptionally dense and pure layer of tungsten or tungsten alloy. Target materials of tungsten, tungsten alloy, rhenium, and rhenium alloy produce good results when electrodeposited onto base members fabricated from molybdenum, molybdenum alloy, and graphite-or carbon-based composites.Type: ApplicationFiled: March 1, 2006Publication date: September 6, 2007Applicant: Plasma Processes, Inc.Inventors: Timothy McKechnie, Anatoliy Shchetkovskiy, Alexander Smirnov
-
Patent number: 5773104Abstract: A high temperature and highly corrosive resistant structure and method of fabricating the structure. In one embodiment of the present invention, vacuum plasma spray or other materials deposition techniques are used to fabricate the structure on a removable support member in the form of a gradient or composite structure that sequentially consists of a 100% ceramic interior layer, a first transition layer of ceramic/refractory metal, a layer of 100% refractory metal, a second transition layer of ceramic/refractory metal, and an outer layer of 100% ceramic material. In a second embodiment, the ceramic/refractory metal/ceramic cartridge is formed without transition layers between the ceramic and metal layers. In another embodiment of the invention the structure is fabricated on a removable support member by depositing an outer layer of ceramic material on a refractory metal. No transition layers of ceramic material/refractory metals are used.Type: GrantFiled: November 13, 1996Date of Patent: June 30, 1998Assignee: Plasma Processes, Inc.Inventors: Timothy N. McKechnie, Richard R. Holmes, Frank R. Zimmerman, Chris A. Power
-
Patent number: 5573682Abstract: An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow.Type: GrantFiled: April 20, 1995Date of Patent: November 12, 1996Assignee: Plasma ProcessesInventors: George P. Beason, Jr., Timothy N. McKechnie, Christopher A. Power