Patents Assigned to Plasma Processes
  • Patent number: 11390960
    Abstract: A structure which is resistant to corrosion at high temperatures comprises a layer of ruthenium and/or ruthenium alloy and a layer of a refractory metal having a high strength at high temperatures, such as rhenium. Further, the structure may include a layer of ceramic such as zirconia or hafnia on the exposed face of the ruthenium layer. Alternative embodiments of the present invention include a catalyst formed from a low strength support structure with a first metal layer and a second ruthenium catalytic layer on top of the first metal layer. Another alternative embodiment of the present invention includes the formation of high purity ruthenium electrodes that are resistant to corrosion at high temperatures.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: July 19, 2022
    Assignee: Plasma Processes, LLC
    Inventors: Timothy N. McKechnie, Anatoliy Shchetkovskiy
  • Patent number: 10106902
    Abstract: This invention provides an electrolyte salt for use in an electrodeposition process for depositing Zirconium metal on a thin foil substrate. The prior art electrochemical process causes a reaction between a uranium substrate and ZrF4 species in the electrolyte that causes the formation of UFx at the substrate surface that prevents the formation of a dense uniform zirconium coating. This problem is solved by using an electrolyte salt in an electrodeposition process consisting of lithium fluoride (LiF) in a concentration ranging between about 11.5 molar percent and about 61 molar percent and one or more salts selected from the group consisting of sodium fluoride (NaF), potassium fluoride (KF), cesium fluoride (CsF), or cesium chloride (CsCL). Zirconium is added to the electrolyte salt through an addition of zirconium fluoride (ZrF4) in the range of about 1 to about 5 mass percent (w/w %). The Zr coating is of at least 98% pure Zr with a density of at least 98%.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 23, 2018
    Assignee: Plasma Processes, LLC
    Inventors: Alexander Smirnov, Scott O'Dell, Anatoliy Shchetkovskiy
  • Patent number: 7615097
    Abstract: Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: November 10, 2009
    Assignee: Plasma Processes, Inc.
    Inventors: Timothy N. McKechnie, Leo V. M. Antony, Scott O'Dell, Chris Power, Terry Tabor
  • Publication number: 20080202288
    Abstract: Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.
    Type: Application
    Filed: October 6, 2006
    Publication date: August 28, 2008
    Applicant: Plasma Processes, Inc.
    Inventors: Timothy McKechnie, Leo Antony, Scott O'Dell, Chris Power, Terry Tabor
  • Publication number: 20070207338
    Abstract: A method for fabricating and the resulting x-ray target comprising metal deposited on an electrically-conductive base member by electrodeposition from a molten salt electrolyte is claimed. The method comprises submerging the base member in a molten salt electrolyte bath. The base member acts as a cathode and anodes of target material metals are activated by electrical circuitry to deposit a target layer onto the base member. The electrodeposition method results in an exceptionally dense and pure layer of tungsten or tungsten alloy. Target materials of tungsten, tungsten alloy, rhenium, and rhenium alloy produce good results when electrodeposited onto base members fabricated from molybdenum, molybdenum alloy, and graphite-or carbon-based composites.
    Type: Application
    Filed: March 1, 2006
    Publication date: September 6, 2007
    Applicant: Plasma Processes, Inc.
    Inventors: Timothy McKechnie, Anatoliy Shchetkovskiy, Alexander Smirnov
  • Patent number: 5783142
    Abstract: A kiln system for a process for treatment of aluminum dross residue (NMP) having available aluminum nitride (AlN) and/or free aluminum (Al) and/or aluminum chlorides (AlCl.sub.3) having a particle size within the range of 0.3 to 300 microns, i.e., "fines" to produce a high alumina lightweight aggregate is described. The process is characterized in that the NMP is fed into a rotating sealed kiln and heated to a temperature in the range of 2000.degree. to 4000.degree. F. while feeding oxygen or a mixture of oxygen and water into the kiln with less than about 20% of the total heat energy input for heating the NMP to a temperature between 2000.degree. and 4000.degree. F. being supplied from an external source. The process does not require prior agglomerization of the fines.
    Type: Grant
    Filed: December 17, 1996
    Date of Patent: July 21, 1998
    Assignee: Plasma Processing Corporation
    Inventor: Richard D. Lindsay
  • Patent number: 5773104
    Abstract: A high temperature and highly corrosive resistant structure and method of fabricating the structure. In one embodiment of the present invention, vacuum plasma spray or other materials deposition techniques are used to fabricate the structure on a removable support member in the form of a gradient or composite structure that sequentially consists of a 100% ceramic interior layer, a first transition layer of ceramic/refractory metal, a layer of 100% refractory metal, a second transition layer of ceramic/refractory metal, and an outer layer of 100% ceramic material. In a second embodiment, the ceramic/refractory metal/ceramic cartridge is formed without transition layers between the ceramic and metal layers. In another embodiment of the invention the structure is fabricated on a removable support member by depositing an outer layer of ceramic material on a refractory metal. No transition layers of ceramic material/refractory metals are used.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: June 30, 1998
    Assignee: Plasma Processes, Inc.
    Inventors: Timothy N. McKechnie, Richard R. Holmes, Frank R. Zimmerman, Chris A. Power
  • Patent number: 5613996
    Abstract: A process for treatment of aluminum dross residue (NMP) having available aluminum nitride (AlN) and/or free aluminum (Al) and/or aluminum chlorides (AlCl.sub.3) having a particle size within the range of 0.3 to 300 microns, i.e., "fines" to produce a high alumina lightweight aggregate is described. The process is characterized in that the NMP is fed into a rotating sealed kiln and heated to a temperature in the range of 2000.degree. to 4000.degree. F. while feeding oxygen or a mixture of oxygen and water into the kiln with less than about 20% of the total heat energy input for heating the NMP to a temperature between 2000.degree. and 4000.degree. F. being supplied from an external source. The process does not require prior agglomerization of the fines.
    Type: Grant
    Filed: May 8, 1995
    Date of Patent: March 25, 1997
    Assignee: Plasma Processing Corporation
    Inventor: Richard D. Lindsay
  • Patent number: 5573682
    Abstract: An improved nozzle for reducing overspray in high temperature supersonic plasma spray devices comprises a body defining an internal passageway having an upstream end and a downstream end through which a selected plasma gas is directed. The nozzle passageway has a generally converging/diverging Laval shape with its upstream end converging to a throat section and its downstream end diverging from the throat section. The upstream end of the passageway is configured to accommodate a high current cathode for producing an electrical arc in the passageway to heat and ionize the gas flow to plasma form as it moves along the passageway. The downstream end of the nozzle is uniquely configured through the methodology of this invention to have a contoured bell-shape that diverges from the throat to the exit of the nozzle. Coating material in powder form is injected into the plasma flow in the region of the bell-shaped downstream end of the nozzle and the powder particles become entrained in the flow.
    Type: Grant
    Filed: April 20, 1995
    Date of Patent: November 12, 1996
    Assignee: Plasma Processes
    Inventors: George P. Beason, Jr., Timothy N. McKechnie, Christopher A. Power
  • Patent number: 5447548
    Abstract: A process for recovering free aluminum and aluminum compounds such as aluminum oxide from aluminum dross and aluminum scrap in a furnace heated with a plasma arc torch followed by oxygen injection after significant aluminum separation has occurred is described. The injected oxygen reacts with aluminum nitrides and unrecoverable aluminum in the dross to provide processing energy. High aluminum recovery is obtained with greatly reduced cycle times at lower overall operating costs.
    Type: Grant
    Filed: May 2, 1994
    Date of Patent: September 5, 1995
    Assignee: Plasma Processing Corporation
    Inventor: Richard D. Lindsay
  • Patent number: 5308375
    Abstract: A process for recovering free aluminum and aluminum compounds such as aluminum oxide from aluminum dross and aluminum scrap in a furnace heated with a plasma arc torch followed by oxygen injection after significant aluminum separation has occurred is described. The injected oxygen reacts with aluminum nitrides and unrecoverable aluminum in the dross to provide processing energy. High aluminum recovery is obtained with greatly reduced cycle times at lower overall operating costs.
    Type: Grant
    Filed: June 22, 1992
    Date of Patent: May 3, 1994
    Assignee: Plasma Processing Corporation
    Inventor: Richard D. Lindsay
  • Patent number: 5203908
    Abstract: A process for recovering free aluminum and aluminum compounds such as aluminum oxide from aluminum dross and aluminum scrap in a furnace heated with a plasma arc torch wherein air at high enthalpy is used as the arc gas. The use of air at high enthalpy as the arc gas provides for more rapid heat output, causing the outer surface or shell of dross to heat rapidly, thereby rupturing the oxide shell releasing free aluminum from within the shell. A higher aluminum recovery is obtained. In a plasma torch high enthalpy is obtained by adding a gas such as CO.sub.2, methane or hydrogen to the air arc gas at a fixed current level or by operating the plasma torch with higher current at a fixed air flow.
    Type: Grant
    Filed: March 2, 1992
    Date of Patent: April 20, 1993
    Assignee: Plasma Processing Corporation
    Inventors: Richard D. Lindsay, Terry L. Moore