Abstract: A system for increasing rates at which fluids may be manually forced through injection/aspiration elements, such as catheters and needles, includes the injection/aspiration elements, as well as a syringe including a pair of crossed handles, one associated with the barrel of the syringe, the other associated with the plunger of the syringe, to provide a mechanical advantage. The system may include and injection/aspiration element of small (e.g., 0.052 inch or smaller) inner diameter and small outer diameter (e.g., 5 French or less). Such systems enable the use of a single hand to hold and operate a syringe in a variety or procedures, including angiography, angioplasty, discography, glue/cement injection, and a variety of aspiration procedures (e.g., biopsy, sampling, media removal, etc.).
Abstract: A syringe includes a barrel and a rotatable element on the barrel; for example at a proximal location along the length of the barrel. The rotatable element rotates at least partially around the barrel. When a handle is associated with the rotatable element, the barrel may rotate as the handle his held substantially stationary or the handle may be rotated while the barrel and any peripheral device secured thereto remain substantially stationary. When handles are associated with a rotatable element that may be removed from a barrel, a barrel that is disassembled from the rotatable element may be replaced with another barrel of the same or a different configuration. Methods of using a syringe with a rotatable element on a barrel thereof are also disclosed.
Abstract: Finger control handles for conventional syringes are disclosed. The finger control handles may be configured to be assembled with a hand-held syringe, to be secured in place on a proximal portion of the barrel of the syringe and, when secured in place, to rotate freely about a circumference of the proximal portion of the barrel of the syringe. Systems that include the finger control handles and a hand-held syringe that is configured to capture the finger control handles are also disclosed, as are various methods of use, including methods for assembling the finger control handles with the syringe and methods for connecting the syringe to an elongated medical instrument, such as a catheter.
Abstract: A syringe includes a barrel and a rotatable element on the barrel; for example at a proximal location along the length of the barrel. The rotatable element rotates at least partially around the barrel. When a handle is associated with the rotatable element, the barrel may rotate as the handle his held substantially stationary or the handle may be rotated while the barrel and any peripheral device secured thereto remain substantially stationary. When handles are associated with a rotatable element that may be removed from a barrel, a barrel that is disassembled from the rotatable element may be replaced with another barrel of the same or a different configuration. Methods of using a syringe with a rotatable element on a barrel thereof are also disclosed.