Patents Assigned to PointSource Technologies, LLC
  • Patent number: 11957932
    Abstract: A brachytherapy source delivery device includes a first tissue-piercing leg having proximal and distal ends, a second tissue-piercing leg having proximal and distal ends, wherein the proximal ends of the first and second tissue-piercing legs are joined at a span section in a first angular orientation with respect to each other, and a carrier element formed at, or attached to, the span section, the carrier element configured to support a radioactive brachytherapy source. The distal ends of the first and second legs can be curved inward toward each other to pierce a tissue when engaged toward each other into a closed position. The first and second tissue-piercing legs can be formed of a wire having a circular cross-sectional or non-circular cross-sectional shape. The carrier element can be tangentially attached to the span section. Each of the legs have a length that is greater than the length of the span section.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: April 16, 2024
    Assignee: PointSource Technologies, LLC
    Inventors: David E. Wazer, Thomas A. DiPetrillo, John J. Munro, III
  • Patent number: 11224761
    Abstract: A brachytherapy source delivery device includes a first tissue-piercing leg having proximal and distal ends, a second tissue-piercing leg having proximal and distal ends, wherein the proximal ends of the first and second tissue-piercing legs are joined at a span section in a first angular orientation with respect to each other, and a carrier element formed at, or attached to, the span section, the carrier element configured to support a radioactive brachytherapy source. The distal ends of the first and second legs can be curved inward toward each other to pierce a tissue when engaged toward each other into a closed position. The first and second tissue-piercing legs can be formed of a wire having a circular cross-sectional or non-circular cross-sectional shape. The carrier element can be tangentially attached to the span section. Each of the legs have a length that is greater than the length of the span section.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: January 18, 2022
    Assignee: PointSource Technologies, LLC
    Inventors: David E. Wazer, Thomas A. DiPetrillo, John J. Munro, III
  • Patent number: 9763660
    Abstract: An instrument used for brachytherapy delivery in the treatment of cancer by radiation therapy including a handle having first and second handle actuators; an end effector; and an instrument shaft that connects the handle with the end effector. The end effector has first and second adjacent disposed staple cartridges that each retain a set of staples. The first mechanism is for holding standard staples in a first array, and dispensing the standard staples under control of the corresponding first handle actuator. The second mechanism is for holding radioactive source staples in a second array, and dispensing said radioactive source staples under control of the corresponding second handle actuator. The actuating device is removably attachable to an actuator arm on a proximal end. A staple applicator cartridge holder is attached to the actuator arm on a distal end. The staple applicator cartridge is mountable in the holder and having a plurality of slots for mounting of radioactive source staples therein.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: September 19, 2017
    Assignee: Pointsource Technologies, LLC
    Inventors: David E. Wazer, Thomas A. DiPetrillo
  • Patent number: 8678990
    Abstract: An instrument used for brachytherapy delivery in the treatment of cancer by radiation therapy including a handle having first and second handle actuators; an end effector; and an instrument shaft that connects the handle with the end effector. The end effector has first and second adjacent disposed staple mechanisms that each retain a set of staples. The first mechanism is for holding standard staples in a first array, and dispensing the standard staples under control of the corresponding first handle actuator. The second mechanism is for holding radioactive source staples in a second array, and dispensing said radioactive source staples under control of the corresponding second handle actuator. A holder is for receiving the first and second mechanisms in a substantially parallel array so that the standard staples close the incision at a surgical margin while the source staples are secured adjacent thereto.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: March 25, 2014
    Assignee: Pointsource Technologies, LLC
    Inventors: David E. Wazer, Thomas A. DiPetrillo
  • Patent number: 6972424
    Abstract: An improvement is described for use in a system that identifies particles in a fluid such as water by passing the fluid through a passage in a transparent carrier and detecting light from a laser beam that is scattered by particles, followed by comparing the scatter pattern to those of known particles, which increases the rate at which particles are detected. A plurality of transparent carriers with through passages are provided, and a narrow beam is directed through each carrier to scatter light from particles at a detect zone in each carrier passage. In one arrangement (60), the carriers (62, 64, 66) are connected in series, so a limited amount of water passes through detect zones (24A, 24B. 24C) to generate a high rate of particle detection. In another arrangement (130), the carrier passages are connected in parallel, so when a larger sample of water is available different parts of the water sample pass through different carrier passages, to again increase the rate of particle detection.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: December 6, 2005
    Assignee: PointSource Technologies, LLC
    Inventors: Gregory M. Quist, Donald C. Mead, Hanno Ix
  • Patent number: 6930769
    Abstract: A method and apparatus are provided for testing a photodetector (20) that has a narrow field of view (A) and an alignment surface (50), to determine whether the field of view and the axis (52) of the field of view are precisely what is expected or deviates therefrom. While the photodetector views a region or zone (102), a narrow spot of light (82) is moved into and out of the zone and across the zone, while the output of the photodetector is monitored. The narrow spot of light is generated by focusing a small spot of light onto a surface. The small spot of light can be a spot of light on an oscilloscope monitor (80) which scans the spot back and forth in a raster pattern. To create a very small spot, the image on the oscilloscope monitor is focused to a greatly reduced size spot image (124) onto the surface that the photodetector views.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: August 16, 2005
    Assignee: PointSource Technologies, LLC
    Inventors: Clay Davis, Alex Aguirre
  • Patent number: 6774995
    Abstract: A method for the identification of unknown particles contained in a fluid. The method utilizes a source of radiation and at least one radiation detector to measure the radiation scattered by an unknown particle in the fluid. The measurement for the unknown particle is compared with a standard radiation scattering pattern capable of uniquely identifying a previously identified particle and the unknown particle is identified based upon the comparison.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: August 10, 2004
    Assignee: PointSource Technologies, LLC
    Inventors: Gregory M. Quist, Hanno Ix
  • Patent number: 6760107
    Abstract: An improvement is provided for a system that identifies particles such as microorganisms in fluid by directing a laser beam (52) forwardly through a tiny detect zone (46) in the fluid and detecting the pattern of light scatter by a particle as it passes through the detect zone. The improvement includes a holographic optical element (60) positioned forward of the detect zone to intercept light scattered in multiple directions by the particle. The holographic optical element is divided into discrete areas, or sections, that each directs intercepted scattered light toward a selected photodetector (74, 90, 92) of a linear array (62) of photodetectors. A converging lens (106) reduces the required diffraction angles of the sections of the holographic optical element. This arrangement avoids the need to custom mount and connect numerous individual photocells, and enables simplified high speed readout of the photodetectors.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: July 6, 2004
    Assignee: PointSource Technologies, LLC
    Inventor: David A. Drake
  • Patent number: 6628386
    Abstract: An apparatus for identifying microscopic particles in a fluid, includes a laser beam (16) that passes though a narrow detect zone (22), and photodetectors (30) that detect light scattered by microscopic particles that pass through the detect zone. The laser beam has a horizontal width (W) that is a plurality of times as great as its average vertical thickness (T), to increase the number of particles passing through the zone while minimizing the time of each particle in the zone. A quadrant detector (48) that is used to detect deviation of the laser beam from a predetermined path, is oriented about 45° from the usual direction. The laser beam is generated by a diode laser (82) whose output passes through two appropriately-positioned cylindrical lenses (84, 86) to produce the desired the ratio of width (W) to thickness (T).
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: September 30, 2003
    Assignee: PointSource Technologies, LLC
    Inventors: Clay Davis, Donald Mead, Gregory Quist
  • Patent number: 6573992
    Abstract: A system for identifying microorganisms and other microscopic particles in a fluid, includes a laser that directs a laser beam (14) through a detect zone (20) and a plurality of photodetectors (30) that detect light scattered in different directions from a particle at the detect zone. The system includes a glass carrier (110) that confines fluid to movement along a narrow passage (116) in the carrier. The front surface (130) of the passage is flat, to facilitate prediction of the scatter light paths, and to enable the passage to have a small cross-sectional area.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: June 3, 2003
    Assignee: Pointsource Technologies, LLC
    Inventor: David A. Drake