Patents Assigned to PolarOnyx, Inc.
  • Patent number: 11772161
    Abstract: Methods and apparatuses for in situ synthesis of SiC, CMCs, and MMCs are disclosed, comprising: providing an apparatus having: an electromagnetic energy source; an autofocusing scanner; a powder system for SiC and one or more powders; a powder delivery system; a shielding gas comprising argon and/or nitrogen; and a computer coupled to and configured to control the energy source, scanner, powder system, and powder delivery system to deposit layers of the sample; programming the computer with specifications of the sample; using the computer to control electromagnetic radiation, mixing ratio, and powder deposition parameters based on the specifications of the sample; and using the autofocusing scanner to focus and scan the electromagnetic radiation onto the sample while the powders are concurrently deposited by the powder delivery system onto the sample to create a melting pool to deposit one or more layers onto the sample. Other embodiments are described and claimed.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 3, 2023
    Assignee: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Patent number: 11465240
    Abstract: Methods and apparatuses for manufacturing are disclosed, including (a) providing an apparatus having: a laser; scanner; powder injection system; powder spreading system; dichroic filter; imager-and-processor; and computer; (b) programming the computer with specifications of a sample; (c) using the computer to set initial parameters based on the sample specifications; (d) adjusting a stage to position the sample; (e) focusing and scanning electromagnetic radiation onto the sample while powder is concurrently injected onto the sample in order to deposit a layer; (f) capturing two-dimensional images of the sample and probing the sample to determine whether the deposited layer was manufactured per the specifications; (g) use the computer to adjust the three-dimensional manufacturing parameters based on the determination made in step (f) prior to additively manufacturing a subsequent layer or making repairs; and (h) repeating steps (d), (e), (f), and (g) until the manufacture is complete.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: October 11, 2022
    Assignee: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Publication number: 20220126370
    Abstract: Methods and apparatuses for AM of all-in-one radiation shielding components from multi-material metal alloys, metal matrix, MMCs, and/or gradated compositions of the same are disclosed, comprising: providing an apparatus having: an energy source; a scanner; a powder system for powder(s); a powder delivery system; a shielding gas; and a computer coupled to and configured to control the energy source, scanner, powder system, and powder delivery system to deposit layers of the sample; programming the computer with specifications of the sample; using the computer to control electromagnetic radiation, mixing ratio, and powder deposition parameters based on the specifications of the sample; and using the autofocusing scanner to focus and scan the electromagnetic radiation onto the sample while the powders are concurrently deposited by the powder delivery system onto the sample to create a melting pool to deposit one or more layers onto the sample. Other embodiments are described and claimed.
    Type: Application
    Filed: October 26, 2021
    Publication date: April 28, 2022
    Applicant: PolarOnyx, Inc.
    Inventors: Jian Liu, Shuang Bai
  • Publication number: 20210252643
    Abstract: Methods and systems for surface structuring to increase emissivity of one or more samples comprising: generating electromagnetic radiation from a femtosecond fiber laser, wherein the electromagnetic radiation comprises a wavelength, a pulse repetition rate, a pulse width, a pulse energy, and an average power; coupling the electromagnetic radiation from the femtosecond fiber laser to an autofocusing scanner, wherein the autofocusing scanner is configured to scan and focus the electromagnetic radiation onto the one or more samples; and using a computer to adjust the pulse repetition rate and the pulse energy of the femtosecond fiber laser and to control the autofocusing scanner to scan and focus the electromagnetic radiation onto the one or more samples to fabricate micro spikes onto the surface of the one or more samples in order to increase the emissivity of the one or more samples. Other embodiments are described and claimed.
    Type: Application
    Filed: February 14, 2020
    Publication date: August 19, 2021
    Applicant: PolarOnyx, Inc.
    Inventors: Jian Liu, Shuang Bai
  • Publication number: 20210205882
    Abstract: Methods and apparatuses for in situ synthesis of SiC, CMCs, and MMCs are disclosed, comprising: providing an apparatus having: an electromagnetic energy source; an autofocusing scanner; a powder system for SiC and one or more powders; a powder delivery system; a shielding gas comprising argon and/or nitrogen; and a computer coupled to and configured to control the energy source, scanner, powder system, and powder delivery system to deposit layers of the sample; programming the computer with specifications of the sample; using the computer to control electromagnetic radiation, mixing ratio, and powder deposition parameters based on the specifications of the sample; and using the autofocusing scanner to focus and scan the electromagnetic radiation onto the sample while the powders are concurrently deposited by the powder delivery system onto the sample to create a melting pool to deposit one or more layers onto the sample. Other embodiments are described and claimed.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 8, 2021
    Applicant: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Publication number: 20210129220
    Abstract: Methods and apparatuses for in situ synthesis of alloys and/or composites are disclosed, the method comprising: (a) providing an apparatus having: an electromagnetic energy source; an autofocusing scanner; a powder system; a powder delivery system; and computers coupled and configured to control the electromagnetic energy source, the autofocusing scanner, the powder system, and the powder delivery system; (b) programming the computers with structural and material specifications of the sample; (c) using the computers to control electromagnetic radiation, powder mixture, and powder deposition parameters; and (d) focusing and scanning the electromagnetic radiation onto the sample while two or more powders are concurrently deposited onto the sample to deposit layers onto the sample for multiple metal powder synthesis, metal and ceramic synthesis, ceramic synthesis, and/or gradated composition synthesis, wherein the layers comprise at least one new material which differs from the two or more powders.
    Type: Application
    Filed: October 30, 2019
    Publication date: May 6, 2021
    Applicant: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Publication number: 20200316720
    Abstract: Methods and apparatuses for manufacturing are disclosed, including (a) providing an apparatus having: a laser; a scanner; a powder injection system; a powder spreading system; a dichroic filter; an imager-and-processor; and a computer; (b) programming the computer with structural and material specifications of a sample; (c) using the computer to set initial parameters based on the structural and material specifications of the sample; (d) adjusting a stage to position the sample; (e) focusing and scanning electromagnetic radiation onto the sample while powder is concurrently injected onto the sample in order to deposit a layer; (f) capturing two-dimensional images of the sample and probing the sample to determine whether the deposited layer was manufactured per the structural and material specifications; (g) use the computer to adjust the three-dimensional manufacturing parameters based on the determination made in step (f) prior to additively manufacturing a subsequent layer or making repairs; and (h) repeati
    Type: Application
    Filed: April 8, 2019
    Publication date: October 8, 2020
    Applicant: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Patent number: 9156238
    Abstract: Methods and systems for three dimensional large area welding and sealing of optically transparent materials are disclosed, including generating a beam of ultra-short pulses from an ultra-short pulsed laser; directing the beam to an acoustic-optic modulator to control the repetition rate of the beam; directing the beam to an attenuator after passing through the acoustic-optic modulator to control the energy of the beam; directing the beam to a focusing lens after passing through the attenuator to focus the beam between a top substrate and a bottom substrate in order to weld the top substrate to the bottom substrate, wherein the top substrate and the bottom substrate are in intimate contact; and controlling the position of the top substrate and the bottom substrate relative to the beam using a three-axis stage in order to weld the top substrate to the bottom substrate at different points. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: October 13, 2015
    Assignee: PolarOnyx, Inc.
    Inventors: Jian Liu, Huan Huang
  • Patent number: 8837038
    Abstract: Methods and systems for managing pulse energy scaling are disclosed, including generating electromagnetic radiation; coupling the electromagnetic radiation to a fiber geometrical management system comprising: a tapered fiber comprising: an elliptical or rectangular core centrally positioned within a single or double cladding shell, wherein the core comprises a fiber material and a doped gain medium; an input face wherein the doped core comprises a major axis and a minor axis, wherein the ratio of the major to minor axis at the input face ranges from about 1 to about 100; an output face wherein the doped core comprises a major axis and a minor axis, wherein the ratio of the major to minor axis at the output face ranges from about 1 to about 100; and wherein the major (minor) axis is adiabatically or linearly tapered from the input face to the output face. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: September 16, 2014
    Assignee: PolarOnyx, Inc.
    Inventor: Jian Liu
  • Publication number: 20140231021
    Abstract: Methods and systems for three dimensional large area welding and sealing of optically transparent materials are disclosed, including generating a beam of ultra-short pulses from an ultra-short pulsed laser; directing the beam to an acoustic-optic modulator to control the repetition rate of the beam; directing the beam to an attenuator after passing through the acoustic-optic modulator to control the energy of the beam; directing the beam to a focusing lens after passing through the attenuator to focus the beam between a top substrate and a bottom substrate in order to weld the top substrate to the bottom substrate, wherein the top substrate and the bottom substrate are in intimate contact; and controlling the position of the top substrate and the bottom substrate relative to the beam using a three-axis stage in order to weld the top substrate to the bottom substrate at different points. Other embodiments are described and claimed.
    Type: Application
    Filed: April 23, 2014
    Publication date: August 21, 2014
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Huan Huang
  • Patent number: 8792158
    Abstract: Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: July 29, 2014
    Assignee: PolarOnyx, Inc.
    Inventors: Jian Liu, Peng Wan, Lihmei Yang
  • Patent number: 8739574
    Abstract: Methods and systems for three dimensional large area welding and sealing of optically transparent materials are disclosed, including generating a beam of ultra-short pulses from an ultra-short pulsed laser; directing the beam to an acoustic-optic modulator to control the repetition rate of the beam; directing the beam to an attenuator after passing through the acoustic-optic modulator to control the energy of the beam; directing the beam to a focusing lens after passing through the attenuator to focus the beam between a top substrate and a bottom substrate in order to weld the top substrate to the bottom substrate, wherein the top substrate and the bottom substrate are in intimate contact; and controlling the position of the top substrate and the bottom substrate relative to the beam using a three-axis stage in order to weld the top substrate to the bottom substrate at different points. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: June 3, 2014
    Assignee: PolarOnyx, Inc.
    Inventors: Jian Liu, Huan Huang
  • Publication number: 20140071521
    Abstract: Methods and systems for managing pulse energy scaling are disclosed, including generating electromagnetic radiation; coupling the electromagnetic radiation to a fiber geometrical management system comprising: a tapered fiber comprising: an elliptical or rectangular core centrally positioned within a single or double cladding shell, wherein the core comprises a fiber material and a doped gain medium; an input face wherein the doped core comprises a major axis and a minor axis, wherein the ratio of the major to minor axis at the input face ranges from about 1 to about 100; an output face wherein the doped core comprises a major axis and a minor axis, wherein the ratio of the major to minor axis at the output face ranges from about 1 to about 100; and wherein the major (minor) axis is adiabatically or linearly tapered from the input face to the output face. Other embodiments are described and claimed.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Applicant: POLARONYX, INC.
    Inventor: Jian Liu
  • Publication number: 20130278930
    Abstract: Methods and systems for real time feedback and control of near-field material processing are disclosed, including generating electromagnetic radiation from a USP laser coupled to a central processing unit; coupling the electromagnetic radiation to an acousto-optic modulator; coupling the electromagnetic radiation to a beam delivery system; coupling the electromagnetic radiation to a beam delivery fiber; using the electromagnetic radiation to generate a plasma on a target mounted to an adjustable stage coupled to the central processing unit; coupling the electromagnetic radiation from the plasma to a plasma spectrum collection system; coupling the electromagnetic radiation to a spectrum analysis unit; coupling the electromagnetic radiation to a detector; and coupling the detector to the central processing unit; wherein the central processing unit uses the output from the detector as feedback in making adjustments to the USP laser and the adjustable stage. Other embodiments are described and claimed.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Huan Huang
  • Publication number: 20130278997
    Abstract: Methods and systems for generating femtosecond fiber laser pulses are disclose, including generating a signal laser pulse from a seed laser oscillator; using a first amplifier stage comprising an input and an output, wherein the signal laser pulse is coupled into the input of the first stage amplifier and the output of the first amplifier stage emits an amplified and stretched signal laser pulse; using an amplifier chain comprising an input and an output, wherein the amplified and stretched signal laser pulse from the output of the first amplifier stage is coupled into the input of the amplifier chain and the output of the amplifier chain emits a further amplified, stretched signal laser pulse. Other embodiments are described and claimed.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: PolarOnyx, Inc.
    Inventors: Jian Liu, Peng Wan, Lihmei Yang
  • Publication number: 20130277340
    Abstract: Methods and systems for fiber-based near-field material processing are disclosed, including generating electromagnetic radiation from a USP laser coupled to a central processing unit; coupling the electromagnetic radiation to an acousto-optic modulator; coupling the electromagnetic radiation to a beam delivery system; coupling the electromagnetic radiation to a beam delivery/collection fiber; using the electromagnetic radiation to generate a plasma on a target mounted to an adjustable stage coupled to the central processing unit; coupling the electromagnetic radiation from the plasma to the beam delivery/collection fiber; coupling the electromagnetic radiation to an optical fiber bundle; coupling the electromagnetic radiation to a spectrum analysis unit; coupling the electromagnetic radiation to a detector; and coupling the detector to the central processing unit; wherein the central processing unit uses the output from the detector as feedback in making adjustments to the USP laser and the adjustable stage.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Huan Huang
  • Patent number: 8456630
    Abstract: Methods and systems for enhanced SERS sensing are disclosed, including generating electromagnetic radiation from a fiber laser; coupling the radiation to a SERS sensor comprising: a fiber comprising a first end and a second end, wherein the first end is coupled to the fiber laser and the second end is deposited with one or more metal nanoparticles; an in-line fiber grating integrated into the fiber between the first and the second end; a spectrometer configured to measure a spectrum produced by the in-line fiber grating; and a micro-processor configured to control the fiber laser and the spectrometer; exciting one or more molecules adsorbed on the surface of the one or more metal nanoparticles to generate a Raman signal; coupling the signal into the fiber; separating the signal into its wavelength components with the in-line fiber grating; and measuring the wavelength components with the spectrometer. Other embodiments are described and claimed.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: June 4, 2013
    Assignee: PolarOnyx, Inc.
    Inventor: Shuang Bai
  • Publication number: 20130068384
    Abstract: Methods and systems for three dimensional large area welding and sealing of optically transparent materials are disclosed, including generating a beam of ultra-short pulses from an ultra-short pulsed laser; directing the beam to an acoustic-optic modulator to control the repetition rate of the beam; directing the beam to an attenuator after passing through the acoustic-optic modulator to control the energy of the beam; directing the beam to a focusing lens after passing through the attenuator to focus the beam between a top substrate and a bottom substrate in order to weld the top substrate to the bottom substrate, wherein the top substrate and the bottom substrate are in intimate contact; and controlling the position of the top substrate and the bottom substrate relative to the beam using a three-axis stage in order to weld the top substrate to the bottom substrate at different points. Other embodiments are described and claimed.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Huan Huang
  • Publication number: 20120026579
    Abstract: Methods and systems for resonant optical amplification are disclosed, including generating electromagnetic radiation from a seed laser; coupling the seed laser electromagnetic radiation into an etalon, wherein the etalon comprises a gain medium comprising a gain, a length, and a roundtrip gain, wherein the gain medium is positioned between a first reflective surface comprising a first power reflectivity and a second reflective surface comprising a second power reflectivity; optically or electrically pumping the gain medium using a flash lamp, an arc lamp, a laser, an electric glow discharge, or an electric current to generate an amplified seed laser electromagnetic radiation; and coupling out the amplified seed laser electromagnetic radiation from the etalon. Other embodiments are described and claimed.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Peng Wan, Lihmei Yang
  • Publication number: 20110211598
    Abstract: An ultrafast laser system includes a seed laser that provides a signal laser pulse and a fiber-based first chirped reflective Bragg grating that reflects the signal laser pulse propagating along a first path and produce a stretched laser pulse longer than the signal laser pulse. A grating frequency of the first chirped reflective Bragg grating varies along the first path. An amplifier can amplify the stretched laser pulse and output an amplified laser pulse. A second chirped reflective Bragg grating can reflect the amplified laser pulse and produce a compressed laser pulse shorter than the amplified laser pulse. The amplified laser pulse propagates along a second path in the second chirped reflective Bragg grating. A grating frequency of the second chirped reflective Bragg grating varies in an opposite direction along the second path as the grating frequency of the first chirped reflective Bragg grating varies along the first path.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Applicant: POLARONYX, INC.
    Inventors: Jian Liu, Lihmei Yang