Patents Assigned to Polestar Technologies, Inc.
  • Publication number: 20180195957
    Abstract: The present disclosure relates to compositions, films and devices for sensing gas molecules. More particularly, the present disclosure relates to compositions, films and devices for sensing gas molecules utilizing optical sensing techniques having improved optical properties including a fluorinated protective layer.
    Type: Application
    Filed: January 6, 2017
    Publication date: July 12, 2018
    Applicant: POLESTAR TECHNOLOGIES, INC
    Inventors: James Kane, Justin Harris, James Biagioni, Timothy Bortz
  • Patent number: 9891187
    Abstract: Systems that can measure small changes in ion concentrations and method of manufacturing and using those systems. The system includes a substrate, a plurality of multi-walled carbon nanotubes, each multi-walled carbon nanotube from the plurality of multi-walled carbon nanotubes having two ends and a surface extending between the two ends, one of the two ends being disposed on and operatively attached to the substrate, the other of the two ends not being disposed on the substrate, a number of organic molecules; each organic molecule bound to one multi-walled carbon nanotube, each organic molecule also having an end group with affinity for a predetermined ion(s), and a substantially nonconducting polymer deposited on a portion of each multiwalled carbon nanotube, the portion substantially not including locations on each multiwalled carbon nanotube at which each organic molecule is chelated.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: February 13, 2018
    Assignee: POLESTAR TECHNOLOGIES, INC.
    Inventors: Ranganathan Shashidhar, Yufeng Ma, James A. Kane
  • Patent number: 9491378
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating, through a patterning component, regions, where an electromagnetic radiation source, from a number of electromagnetic radiation sources, illuminates the patterning component, each repetition performed with a different wavelength. A number of Global pixelated images are obtained. The number of global pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: November 8, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 9347908
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 24, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 9316594
    Abstract: A carbon dioxide detector including a sensor component, where the sensor component has a colorimetric indicator salt of a colorimetric pH indicator and a lipophilic phosphonium quaternary cation, a transparent polymer vehicle or a plasticizer not being in a mixture with the colorimetric indicator salt; and a porous memory, a porous polymer membrane in one instance, the colorimetric indicator salt being deposited on a surface of the porous polymer membrane; the colorimetric indicator salt deposited on the porous polymer membrane does not include a transparent polymer vehicle or a plasticizer, and carbon dioxide detection systems using the detector.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: April 19, 2016
    Assignee: Polestar Technologies, Inc.
    Inventor: James A. Kane
  • Patent number: 9310512
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process one or more detection outputs, the detection outputs obtained by illuminating regions with a electromagnetic radiation source from the number of electromagnetic radiation sources, each electromagnetic radiation source emitting at a different wavelength, the one or more detection outputs, after processing, constituting a vector of processed data, and the analysis subsystem being also configured to compare the vector of processed data to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 12, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar, Timothy Bortz
  • Patent number: 9305237
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: April 5, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 9262692
    Abstract: Methods and systems for efficiently and accurately detecting and identifying concealed materials. The system includes an analysis subsystem configured to process a number of pixelated images, the number of pixelated images obtained by repeatedly illuminating regions with a electromagnetic radiation source from a number of electromagnetic radiation sources, each repetition performed with a different wavelength. The number of pixelated images, after processing, constitute a vector of processed data at each pixel from a number of pixels. At each pixel, the vector of processed data is compared to a predetermined vector corresponding to a predetermined material, presence of the predetermined material being determined by the comparison.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: February 16, 2016
    Assignee: Polestar Technologies, Inc.
    Inventors: James A. Kane, Ranganathan Shashidhar
  • Patent number: 8685745
    Abstract: A multilayered optical sensing patch, for the measurement of conditions, such as pH, oxygen level, etc, within containers, is provided. The multilayered optical sensing patch of the present invention is comprised of a heat sealable polymer substrate layer, and a polymeric sensing membrane later attached thereto. The polymer sensing membrane layer is formed of a porous polymer support membrane, and an optical sensing composition (comprising a reactive indicator) covalently bonded thereto. The heat sealable polymer substrate layer is capable of being securely bonded to the inner layer of bioreactor bags, as well as the porous polymer support substrate layer. Further, the porous polymer support membrane layer provides a firm supporting structure for the polymeric sensing layer, thereby protecting the optical sensing composition disposed therein from degradation/damage.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: April 1, 2014
    Assignee: Polestar Technologies, Inc.
    Inventor: James A. Kane
  • Patent number: 8628728
    Abstract: A non-invasive, calorimetric infection detector is provided, comprised of a substrate, and one or more indicator compositions disposed upon or incorporated therein. These indicator compositions exhibit a persistent change color when exposed to gaseous oxides of nitrogen and acids formed therefrom, providing a means of detecting NO production in a wound, which has been found to occur at a high level at the onset of infection in a wound. In addition, a bandage is provided, comprised of the detector, as well as a porous portion, and preferably a hydrophobic barrier layer to protect the detector from contamination by water and other fluids draining from the wound. The non-invasive, calorimetric infection detector, and bandage containing same, can be utilized to provide a convenient, easily utilized colorimetric means of detecting the onset of wound infection, thereby enabling caregivers to effectively and timely treat infections.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: January 14, 2014
    Assignee: Polestar Technologies, Inc.
    Inventors: James A Kane, Melissa Ricci, Ranganathan Shashidhar
  • Patent number: 8552401
    Abstract: An optical chemical sensor feedback control system is provided comprised of a luminescent sensing film, an optical processor adjacent the sensing film capable of sinusoidally photoexciting the luminescent sensing film and detecting the luminescent emission resulting therefrom, and a computer control means executing a computer program, in communication with the optical processor. The computer control means is operable to control the magnitude of the photoexcitation of the luminescent sensing film, wherein the computer control means receives data regarding the luminescent emission resulting therefrom, analyzes same, and determines the magnitude and phase shift of the luminescence relative to the photoexcitation. Further, the system herein is operable to determine the status of the sensing film, and adjust the magnitude of photoexcitation thereof based on same.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: October 8, 2013
    Assignee: Polestar Technologies, Inc.
    Inventor: James A Kane
  • Publication number: 20130092547
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device.
    Type: Application
    Filed: November 5, 2012
    Publication date: April 18, 2013
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 8415624
    Abstract: A method and system for detection and identification of concealed materials, is provided, wherein a dark image and two or more NIR sample images are taken at two or more key wavelengths or bands of wavelengths corresponding to peaks and/or valleys in the NIR spectra of known materials, and differential wavelength imaging processes are used to produce a differential wavelength image based on therein. The differential wavelength image is then analyzed/processed so as to detect any materials concealed on the target of interest, such as a human or piece of baggage, by calculation of pixel intensity values in the image and identification of distinctive pixel values. Then, via various methods, the distinctive pixel values of the detected materials are compared to a data set of known wavelengths related to known materials, such as explosives and other contraband. Correspondence thereof results in an accurate identification of the concealed material(s).
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: April 9, 2013
    Assignee: Polestar Technologies, Inc.
    Inventor: Ranganathan Shashidhar
  • Patent number: 8313633
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device formed by the process steps of: (a) fabricating using photolithography a pair of metallic electrodes separated by a microscale gap onto a first electrical insulation layer formed on a substrate; (b) applying a second electrical insulation layer on most of a top surface of said pairs of electrodes; (c) depositing additional metallic electrode material onto said electrode pairs using electrochemical deposition, thereby decreasing said microgap to a nano sized gap between said electrode pairs; (d) electrochemically polymerizing in said nanogap conductive monomers containing a target analyte, thereby forming a conducting polymer nanojunction in the gap between electrode pairs; and (e) immersing resultant sensor device in a solution which removes away the target analyte, and intermittently applying a voltage to the conducting polymer while it is immersed in said solution, thereby swelling and shrinking the co
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: November 20, 2012
    Assignee: Polestar Technologies, Inc.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Patent number: 8313710
    Abstract: A multilayered optical sensing patch, for the measurement of conditions, such as pH, oxygen level, etc, within containers, is provided. The multilayered optical sensing patch of the present invention is comprised of a heat sealable polymer substrate layer, and a polymeric sensing membrane later attached thereto. The polymer sensing membrane layer is formed of a porous polymer support membrane, and an optical sensing composition (comprising a reactive indicator) covalently bonded thereto. The heat sealable polymer substrate layer is capable of being securely bonded to the inner layer of bioreactor bags, as well as the porous polymer support substrate layer. Further, the porous polymer support membrane layer provides a firm supporting structure for the polymeric sensing layer, thereby protecting the optical sensing composition disposed therein from degradation/damage.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 20, 2012
    Assignee: Polestar Technologies, Inc.
    Inventor: James A Kane
  • Publication number: 20110024302
    Abstract: A molecular recognition sensor system is provided incorporating a molecular imprinted nanosensor device formed by the process steps of: (a) fabricating using photolithography a pair of metallic electrodes separated by a microscale gap onto a first electrical insulation layer formed on a substrate; (b) applying a second electrical insulation layer on most of a top surface of said pairs of electrodes; (c) depositing additional metallic electrode material onto said electrode pairs using electrochemical deposition, thereby decreasing said microgap to a nano sized gap between said electrode pairs; (d) electrochemically polymerizing in said nanogap conductive monomers containing a target analyte, thereby forming a conducting polymer nanojunction in the gap between electrode pairs; and (e) immersing resultant sensor device in a solution which removes away the target analyte, and intermittently applying a voltage to the conducting polymer while it is immersed in said solution, thereby swelling and shrinking the co
    Type: Application
    Filed: July 28, 2009
    Publication date: February 3, 2011
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: Xiulan Li, Ranganathan Shashidhar, Yufeng Ma
  • Publication number: 20100278441
    Abstract: A method and system for detection and identification of concealed materials, is provided, wherein a dark image and two or more NIR sample images are taken at two or more key wavelengths or bands of wavelengths corresponding to peaks and/or valleys in the NIR spectra of known materials, and differential wavelength imaging processes are used to produce a a differential wavelength image based on therein. The differential wavelength image is then analyzed/processed so as to detect any materials concealed on the target of interest, such as a human or piece of baggage, by calculation of pixel intensity values in the image and identification of distinctive pixel values. Then, via various methods, the distinctive pixel values of the detected materials are compared to a data set of known wavelengths related to known materials, such as explosives and other contraband. Correspondence thereof results in an accurate identification of the concealed material(s).
    Type: Application
    Filed: February 25, 2010
    Publication date: November 4, 2010
    Applicant: Polestar Technologies, Inc.
    Inventor: Ranganathan Shashidhar
  • Publication number: 20100178203
    Abstract: A non-invasive, calorimetric infection detector is provided, comprised of a substrate, and one or more indicator compositions disposed upon or incorporated therein. These indicator compositions exhibit a persistent change color when exposed to gaseous oxides of nitrogen and acids formed therefrom, providing a means of detecting NO production in a wound, which has been found to occur at a high level at the onset of infection in a wound. In addition, a bandage is provided, comprised of the detector, as well as a porous portion, and preferably a hydrophobic barrier layer to protect the detector from contamination by water and other fluids draining from the wound. The non-invasive, calorimetric infection detector, and bandage containing same, can be utilized to provide a convenient, easily utilized colorimetric means of detecting the onset of wound infection, thereby enabling caregivers to effectively and timely treat infections.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventors: James A. Kane, Melissa Ricci, Ranganathan Shashidhar
  • Publication number: 20100032583
    Abstract: An optical chemical sensor feedback control system is provided comprised of a luminescent sensing film, an optical processor adjacent the sensing film capable of sinusoidally photoexciting the luminescent sensing film and detecting the luminescent emission resulting therefrom, and a computer control means executing a computer program, in communication with the optical processor. The computer control means is operable to control the magnitude of the photoexcitation of the luminescent sensing film, wherein the computer control means receives data regarding the luminescent emission resulting therefrom, analyzes same, and determines the magnitude and phase shift of the luminescence relative to the photoexcitation. Further, the system herein is operable to determine the status of the sensing film, and adjust the magnitude of photoexcitation thereof based on same.
    Type: Application
    Filed: January 5, 2009
    Publication date: February 11, 2010
    Applicant: POLESTAR TECHNOLOGIES, INC.
    Inventor: James A. Kane
  • Publication number: 20080286155
    Abstract: A multilayered optical sensing patch, for the measurement of conditions, such as pH, oxygen level, etc, within containers, is provided. The multilayered optical sensing patch of the present invention is comprised of a heat sealable polymer substrate layer, and a polymeric sensing membrane later attached thereto. The polymer sensing membrane layer is formed of a porous polymer support membrane, and an optical sensing composition (comprising a reactive indicator) covalently bonded thereto. The heat sealable polymer substrate layer is capable of being securely bonded to the inner layer of bioreactor bags, as well as the porous polymer support substrate layer. Further, the porous polymer support membrane layer provides a firm supporting structure for the polymeric sensing layer, thereby protecting the optical sensing composition disposed therein from degradation/damage.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 20, 2008
    Applicant: Polestar Technologies, Inc.
    Inventor: James A. Kane