Abstract: A field (e.g., a magnetic field) which nutates about a pointing vector is used to both track or locate an object in addition to determining the relative orientation of this object. Apparatus for generating such a field includes mutually orthogonal coils and circuitry for supplying an unmodulated carrier, hereafter called DC signal, to one coil and an AC modulated carrier signal, hereafter called AC signal, to at least one (usually two) other coil, such that the maximum intensity vector of a magnetic field produced by the currents in the coils nutates about a mean axis called the pointing vector direction of the field.
Abstract: An electromagnetic field which nutates about a pointing vector is used to both track or locate a remote object in addition to determining the relative orientation of the object. Apparatus for generating such a field includes mutually orthogonal dipole radiators, defining a reference coordinate frame, and circuitry for supplying excitations, such that the maximum intensity vector of a vector field produced by these excitations in the radiators nutates about a mean axis or axis of nutation which is called the pointing vector direction of the field. A pointing coordinate frame has the x-axis coincident with the pointing vector and the y-axis in the x-y plane of the reference frame. Mutually orthogonal sensors at the object sense the field and establish a sense coordinate frame, which can be coincident with the coordinate frame of the remote body.