Abstract: Microorganisms are destroyed and enzymes can be inactivated in liquids, such as juices for example, by continuously flowing the liquid and continuously flowing pressurized dense CO2 along flow paths which are separated by membrane having minute pores at which the flows contact each other in a nondispersive manner. Pressures in the two flow paths are equalized and the dense CO2 flow is continuously recirculated without depressurization. Contact between the flows can be maximized by using a plurality of parallel hollow fiber porous membranes with one of the flows being directed into the hollow fibers and the other of the flows being directed along exterior surfaces of the fibers. The process does not adversely affect properties of the liquid, such as taste, aroma and nutritional content, as heating of the liquid to a high temperature is unnecessary.
Abstract: Emulsions containing dense gas, liquid and a surfactant which may have been used for extraction of a solute from a substance or for other purposes are demulsified by passage through a membrane contactor. An emulsion flow path in the contactor is separated from a dense gas and surfactant flow path by membrane having pores which enable passage of the dense gas and surfactant constituents of the emulsion through the membrane while inhibiting passage of the liquid and any solute which may be therein. The membrane may be a plurality of hollow fibers. A portion of the recovered dense gas may be vaporized, temperature adjusted and be repressurized and be redirected into the dense gas and surfactant flow path to increase processing rate. Recovered dense gas and surfactant may be returned to the emulsion source for reuse therein.