Patents Assigned to Power Generating, Inc.
  • Patent number: 7278265
    Abstract: A catalytic combustor for a combustion turbine that employs a protective nickel aluminide diffusion barrier on its inside and outside surfaces with a porous alumina, zirconia, titania, and/or ceria, and bond phase coating on the outside surface in which a catalyst is contained.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 9, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Mary Anne Alvin, Basil Mucha, James Klotz
  • Patent number: 7270515
    Abstract: A cooling system for a turbine airfoil of a turbine engine having multiple segmented ribs aligned together spanwise within a trailing edge cooling channel. The segmented ribs may be positioned proximate to a trailing edge of the turbine airfoil to facilitate increased heat removal with less cooling fluid flow, thereby resulting in increased cooling system efficiency, and to increase the structural integrity of the trailing edge of the airfoil. The segmented ribs may include crossover orifices that provide structural integrity to ceramic cores used during manufacturing to prevent cracking and other damage.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: September 18, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: George Liang
  • Patent number: 7270890
    Abstract: Aspects of the invention relate to a system for monitoring the wear of a component. A conductor can be embedded in the component at a depth from a surface of the component. In one embodiment, the conductor can be operatively connected to a power source to form an electrical circuit. The resistance across the conductor can be measured. As the component contacts a second component, the component can begin to wear. Once the wear progresses to the conductor, changes in the measured resistance can result. Thus, an operator can be alerted that the component has worn to a certain point and that service may be needed. Alternatively, impedance can be measured across the conductor. Because the dielectric permeability of the material surrounding the conductor can affect impedance, changes in impedance can occur as the surface material of the component is worn away.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: September 18, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Stephen M. Sabol, Ramesh Subramanian
  • Patent number: 7269953
    Abstract: A method of controlling a gas turbine system (10) may include controlling an inlet guide vane position (98) to maintain a turbine (24) exhaust temperature at a corrected value that is a function of a compressor (12) inlet temperature and a turbine (24) normalized load. The method may include selecting the minimum value (138) of a part load tunable value, a part load maximum value and a fixed maximum value of a turbine (24) exhaust temperature for the corrected value. A corrected value setpoint may be determined (94) for the gas turbine system (10) operating at a part load condition where at least one of a fuel flow rate and the inlet guide vane position is controlled (98) so the corrected value does not exceed the corrected value setpoint. The corrected value may prevent a turbine (24) engine from exceeding its firing temperature during operation and ensure the engine operates within combustor dynamics and emissions limits.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 18, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Satish Gadde, Christopher Humphrey, Stefan Schneider, Fadi Tadros, Jatinder Singh
  • Patent number: 7270517
    Abstract: A blade assembly (10) for a turbine (16) including a vibration damper (12) having a mounting base (38) sealingly disposed at an inlet end (24) of a cooling fluid passageway (22) within the root section (20) of the blade assembly and including an opening (40) in the mounting base for passing cooling fluid into the cooling passageway. The opening is sized to function effectively as an orifice for limiting a maximum flow rate of cooling fluid in the event of a breach of the cooling fluid passageway downstream of the inlet end. A wear feature (34) is formed on the distal end of the vibration damper opposed the mounting base for rubbing interface with a complementary wear feature attached to a wall (26) of the cooling fluid passageway. The wear feature may include a non-planar wear surface such as angularly disposed wear surfaces (58, 60) effective to resist vibrational movement in two directions.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: September 18, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Chad M. Garner
  • Patent number: 7268174
    Abstract: The present invention relates to homogeneous alumoxane-LCT-epoxy polymers and methods for making the same. The homogeneous alumoxane-LCT-epoxy polymers comprise alumoxane-containing sub-structures evenly dispersed and essentially completely co-reacted with the LCT-epoxy sub-structures. The alumoxane sub-structures are organically bonded to the LCT-epoxy sub-structures. This produces homogeneous alumoxane-LCT-epoxy polymers that are substantially free of particle wetting and micro-void formation, with improved thermal conductivity properties without compromising on other desired structural integrities.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 11, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: James D. B. Smith
  • Patent number: 7268293
    Abstract: An electrically insulated object 13 with a heat conduit at the interface between the layers of insulating tape 16. The tape 16 has been, surface coated with a high thermal conductivity (HTC) material, so that the interface between the layers of tape 23 provides a pathway for the heat to reach the environment 24. The radiation of heat through the tape layers is also increased by the surface coatings.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 11, 2007
    Assignee: Siemen Power Generation, Inc.
    Inventors: James D B Smith, Gary Stevens, John W Wood
  • Patent number: 7261873
    Abstract: A process for obtaining energy values contained in a sulphur-containing carbonaceous fuel, the process comprising (a) treating a feed carbonaceous fuel having a first bound-sulphur content with an effective amount of an oxygen and SO2-containing gas in a reactor at an effective temperature to (i) provide elemental sulphur from the SO2, (ii) release exothermic heat, and (iii) produce a hot effluent gaseous steam containing the elemental sulphur and treated fuel having a second bound-sulphur content, (b) separating the elemental sulphur from the treated fuel; (c) collecting the elemental sulphur; (d) collecting the treated fuel; and (e) collecting the exothermic heat.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 28, 2007
    Assignee: Enflow Power Generation Inc.
    Inventors: Charles Q. Jia, Donald W. Kirk
  • Patent number: 7259552
    Abstract: A measurement device for measuring the wear of turbo-machine components to reduce the likelihood of component failure while a turbine-machine is at load. The measurement device is capable of measuring and calculating a distance between surfaces while the turbo-machine is at load. The distance may be compared with a measurement taken of the same location at another time to determine wear of a surface remote from the location of the measurement. The measurement device may be configured such that multiple measurements may be made on a single turbine engine by moving the measurement device from location to location.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: August 21, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 7258530
    Abstract: An airfoil (44) formed of a plurality of pre-fired structural CMC panels (46, 48, 50, 52). Each panel is formed to have an open shape having opposed ends (54) that are free to move during the drying, curing and/or firing of the CMC material in order to minimize interlaminar stresses caused by anisotropic sintering shrinkage. The panels are at least partially pre-shrunk prior to being joined together to form the desired structure, such as an airfoil (42) for a gas turbine engine. The panels may be joined together using a backing member (30), using flanged ends (54) and a clamp (56), and/or with a bond material (36), for example.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: August 21, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Jay A. Morrison, Gary B. Merrill, Steven James Vance, Harry A. Albrecht, Yevgeniy Shteyman
  • Patent number: 7255534
    Abstract: A turbine vane usable in a turbine engine and having at least one cooling system. The cooling system includes three diffusors in an outer wall of the vane for reducing the velocity of the cooling fluids exiting the turbine vane. One of the diffusors is formed from one or more cavities in an outer wall of the turbine vane for heat dissipation. The cavities may be supplied with cooling fluids from an internal cooling cavity through one or more interior metering orifices. The cooling fluids may exit the cooling cavity through one or more exterior metering orifices, which are second diffusors, and diffusion slots, which are third diffusors, that reduce the velocity of the cooling fluids and enable formation of a film cooling layer on the outer surface of the turbine vane.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: August 14, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: George Liang
  • Patent number: 7249461
    Abstract: A turbine fuel ring assembly includes a fuel distribution ring, at least one fuel supply tube attached to the fuel distribution ring and at least one attachment leg connected to the fuel distribution ring. The fuel ring has a hollow interior and a plurality of apertures for expelling a fluid. The attachment leg is configured to allow flexibility due to thermal expansion induced under certain load conditions such as during engine start-up or shut-down. Further, the configuration of the attachment legs provides improved stress distribution characteristics. The fuel supply tube includes a rectangular passage and a round passage that are disposed substantially transverse to each other and in fluid communication with each other and with the hollow interior of the fuel distribution ring. The rectangular passage and the round passage have substantially identical cross-sectional areas. The fuel supply tube is configured to avoid structural interferences with neighboring components.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 31, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Ricardo Ferreira Moraes
  • Patent number: 7250776
    Abstract: Aspects of the invention relate to a system for assessing the condition of a thermal barrier coating on a turbine vane during engine operation. According to embodiments of the invention, one or more wires can be passed along the airfoil portion of the vane. The wires can extend over, within, or beneath the thermal coating. An electrical current can be passed along the wires, and electrical resistance can be measured across the wires. Thus, if a portion of the thermal coating becomes damaged, then the wires located in that area may break. A disconnect in the wires can lead to an increase in resistance across the wires, which can alert an operator to a problem. Some assessment systems can provide a general indication of the magnitude of damage and whether the damage is spreading.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: July 31, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Michael Twerdochlib
  • Patent number: 7247002
    Abstract: A component (10) for a gas turbine engine formed of a stacked plurality of ceramic matrix composite (CMC) lamellae (12) supported by a metal support structure (20). Individual lamellae are supported directly by the support structure via cooperating interlock features (30, 32) formed on the lamella and on the support structure respectively. Mating load-transferring surfaces (34, 36) of the interlock features are disposed in a plane (44) oblique to local axes of thermal growth (38, 40) in order to accommodate differential thermal expansion there between with delta alpha zero expansion (DAZE). Reinforcing fibers (62) within the CMC material may be oriented in a direction optimized to resist forces being transferred through the interlock features. Individual lamellae may all have the same structure or different interlock feature shapes and/or locations may be used in different groups of the lamellae. Applications for this invention include an airfoil assembly (10) and a ring segment assembly (82).
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Harry A. Albrecht, Yevgeniy Shteyman, Jay A. Morrison, Daniel G. Thompson
  • Patent number: 7247003
    Abstract: A stacked ceramic matrix composite lamellate assembly (10) including shear force bearing structures (48) for resisting relative sliding movement between adjacent lamellae. The shear force bearing structures may take the form of a cross-lamellar stitch (50), a shear pin (62), a warp (90) in the lamellae, a tongue (104) and groove (98) structure, or an inter-lamellar sealing member (112), in various embodiments. Each shear force bearing structure secures a subset of the lamellae, with at least one lamella being common between adjacent subsets in order to secure the entire assembly.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Michael A. Burke, Jay A. Morrison, Steven James Vance, Daniel G. Thompson, Vijay Parthasarathy, Gary B. Merrill, Douglas Allen Keller
  • Patent number: 7247966
    Abstract: A generator includes a shaft and rotor body defining poles and a winding positioned around the shaft on the rotor body. A rotor pole crossover is aligned to the shaft and connects ends of the winding between adjacent poles. The rotor pole crossover includes a body member having a curved medial section and opposing legs extending outwardly from the curved medial section that connect to the ends of the winding. The curved medial section has at least one slot formed therein to add flexibility to the rotor pole crossover.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: David Shore, Phillip Keaton
  • Patent number: 7247959
    Abstract: A dynamoelectric machine 30 includes a rotor 32 and a stator 34 surrounding the rotor. The dynamoelectric machine 30 further includes a generator housing 36 surrounding both the rotor 32 and the stator 34. Additionally, the dynamoelectric machine 30 includes at least one blower 39a, 39b for generating a cooling gas flow 38 within the generator housing 36 to cool the stator 34 and the rotor 32. The dynamoelectric machine 30 includes at least one arcuate heat exchanger 40a, 40b, 80a, 80b within the generator housing 36 for extracting heat from the cooling gas flow 38.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: King Wai Chan, Homer Gay Hargrove
  • Patent number: 7246480
    Abstract: A heating system for a turbine engine air intake region for preventing the formation of ice on the air intake region, which may be formed from the bell-mouth, one or more vanes, such as inlet guide vanes, a turbine blade assembly formed from one or more blades, such as the first row of rotating blades, and related components. A heat source may be attached to the inlet manifold and positioned to emit thermal radiation toward the air intake region to prevent the formation of ice thereon.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: Paul David Ritland
  • Patent number: 7246995
    Abstract: A seal usable to seal a transition in a can-annular combustion system of a turbine engine to a turbine vane assembly to direct exhaust gases through the turbine vane assembly. The seal may be formed from an elongated body extending along an outer edge of the transition and having first and second edges. The first edge of the seal may be attached to the transition, and the elongated body may extend away from the transition edge and contact a portion of the turbine vane assembly. The elongated body may flex during use without yielding or otherwise deforming.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: July 24, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventor: James Michael Zborovsky
  • Patent number: 7245030
    Abstract: An electrical power generating apparatus (20) may include a housing (22), an electrical generator (24) within the housing, and a step-up transformer (30) within the housing and connected to the electrical generator. A turbine (26) may be provided exterior the housing (22) to drive the electrical generator (24). A barrier wall (38) may be provided within the housing and (22) between the electrical generator (24) and the step-up transformer (30), and a fire extinguishing system (40) may be installed within the housing (22). The step-up transformer (30) may be connected to the electrical generator (24) without use of an isolated phase bus.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: July 17, 2007
    Assignee: Siemens Power Generation, Inc.
    Inventors: Robert J. Nelson, Stephen W. Cates