Patents Assigned to PowerGenix Systems, Inc.
  • Patent number: 8048566
    Abstract: The nickel hydroxide particles for a nickel hydroxide electrode may be treated using an alkaline solution of a strong oxidizing agent such as sodium or potassium persulfate to modify the surface nickel hydroxide structure. The resulting modified surface structure has been found to impart various benefits to electrodes formed from the nickel hydroxide. It is believed that the oxidation of cobalt compounds at the surface of the nickel hydroxide particles results in a highly conductive cobalt compound that plays an important role in the high reliability, high stability and high capacity utilization of nickel electrodes as described herein.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: November 1, 2011
    Assignee: Powergenix Systems, Inc.
    Inventors: Mingming Geng, Jeffrey Phillips, Samaresh Mohanta
  • Patent number: 8043748
    Abstract: Active material for a positive electrode of a rechargeable alkaline electrochemical cell is made with nickel hydroxide particles or cobalt-coated nickel hydroxide particles treated with strongly oxidizing reagents such as alkali metal persulfate in alkaline solution. The active material also may be made with cobalt-coated nickel hydroxide particles having a high percentage of cobalt(III) on a surface or an average cobalt oxidation state of about 3 measured across the particles. The treated nickel hydroxide or cobalt-coated nickel hydroxide decreases the cobalt solubility in the alkaline electrolyte and increases the high-rate charge and discharge capability. The lower cobalt solubility decreases cobalt migration that can increase self discharge and lead to premature failure.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: October 25, 2011
    Assignee: PowerGenix Systems, Inc.
    Inventors: Mingming Geng, Samaresh Mohanta, Jeffrey Phillips, Zeiad M. Muntasser, Jeff Barton
  • Publication number: 20110168565
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Application
    Filed: March 23, 2011
    Publication date: July 14, 2011
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Feng Feng, Jeffrey Phillips, Sam Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Patent number: 7931988
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 26, 2011
    Assignee: Powergenix Systems, Inc.
    Inventors: Feng Feng, Jeffrey Phillips, Samaresh Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Publication number: 20110086252
    Abstract: Rechargeable nickel zinc cells, and methods of manufacture, of a configuration that utilizes a positive can with a vent cap at the positive pole of the battery are described.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventor: Jeffrey Phillips
  • Publication number: 20110059343
    Abstract: Embodiments are described in terms of selective methods of sealing separators and jellyroll electrode assemblies and cells made using such methods. More particularly, methods of selectively heat sealing separators to encapsulate one of two electrodes for nickel-zinc rechargeable cells having jellyroll assemblies are described. Selective heat sealing may be applied to both ends of a jellyroll electrode assembly in order to selectively seal one of two electrodes on each end of the jellyroll.
    Type: Application
    Filed: September 8, 2010
    Publication date: March 10, 2011
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Bryan L. McKinney, Steve Salamon, James Wu, Todd F. Tatar, Brian M. Schroeter, Jeffrey Philips
  • Publication number: 20110039139
    Abstract: Methods of manufacturing a rechargeable power cell are described. Methods include providing a slurry or paste of negative electrode materials having low toxicity and including dispersants to prevent the agglomeration of particles that may adversely affect the performance of power cells. The methods utilize semi-permeable sheets to separate the electrodes and minimize formation of dendrites; and further provide electrode specific electrolyte to achieve efficient electrochemistry and to further discourage dendritic growth in the cell. The negative electrode materials may be comprised of zinc and zinc compounds. Zinc and zinc compounds are notably less toxic than the cadmium used in NiCad batteries. The described methods may utilize some production techniques employed in existing NiCad production lines. Thus, the methods described will find particular use in an already well-defined and mature manufacturing base.
    Type: Application
    Filed: October 7, 2010
    Publication date: February 17, 2011
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Jeffrey Phillips, Jason Zhao
  • Publication number: 20110033747
    Abstract: The conductivity of a zinc negative electrode is enhanced through use of surfactant-coated carbon fibers. Carbon fibers, along with other active materials such as bismuth oxide, zinc etc., form an electronically conductive matrix in zinc negative electrodes. Zinc negative electrodes as described herein are particularly useful in nickel zinc secondary batteries.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Jeffrey Phillips, Samaresh Mohanta, Deepan Bose, Cecilia Maske
  • Publication number: 20100291439
    Abstract: Active material for a negative electrode of a rechargeable zinc alkaline electrochemical cell is made with zinc metal particles coated with tin and/or lead. The zinc particles may be coated by adding lead and tin salts to a slurry containing zinc particles, a thickening agent and water. The remaining zinc electrode constituents such as zinc oxide (ZnO), bismuth oxide (Bi2O3), a dispersing agent, and a binding agent such as Teflon are then added. The resulting slurry/paste has a stable viscosity and is easy to work with during manufacture of the zinc electrode. Further, the zinc electrode is much less prone to gassing when cobalt is present in the electrolyte. Cells manufactured from electrodes produced in accordance with this invention exhibit much less hydrogen gassing, by as much as 60-80%, than conventional cells. The cycle life and shelf life of the cells is also enhanced, as the zinc conductive matrix remains intact and shelf discharge is reduced.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Applicant: PowerGenix Systems, Inc.
    Inventors: Jeffrey Phillips, Samaresh Mohanta, Cecilia Maske, Deepan Chakkaravarthi Bose, James J. Wu, Bryan L. McKinney
  • Patent number: 7833663
    Abstract: Methods of manufacturing a rechargeable power cell are described. Methods include providing a slurry or paste of negative electrode materials having low toxicity and including dispersants to prevent the agglomeration of particles that may adversely affect the performance of power cells. The methods utilize semi-permeable sheets to separate the electrodes and minimize formation of dendrites; and further provide electrode specific electrolyte to achieve efficient electrochemistry and to further discourage dendritic growth in the cell. The negative electrode materials may be comprised of zinc and zinc compounds. Zinc and zinc compounds are notably less toxic than the cadmium used in NiCad batteries. The described methods may utilize some production techniques employed in existing NiCad production lines. Thus, the methods described will find particular use in an already well-defined and mature manufacturing base.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: November 16, 2010
    Assignee: Powergenix Systems, Inc.
    Inventors: Jeffrey Phillips, Jason Zhao
  • Patent number: 7829221
    Abstract: A nickel-zinc galvanic cell is provided, having a zinc oxide negative electrode, a nickel oxide positive electrode, and an alkaline electrolyte. Chemical additives are placed in each of the negative and positive electrodes. The positive nickel hydroxide electrode contains a mixture of cobalt oxide contained within a nickel oxide matrix in the range of about 1% to 10%, and cobalt metal in the range of about 1% to 10%, by weight. The negative zinc oxide electrode may contain oxides other than the oxide of zinc, which have redox potentials which are negative of ?0.73 volts. Also, the metal oxide additives to the negative zinc oxide electrode are such as to inhibit release of soluble cobalt from the nickel oxide negative electrode prior to a formation charge being applied to the electrochemical cell.
    Type: Grant
    Filed: July 26, 2004
    Date of Patent: November 9, 2010
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 7816035
    Abstract: A zinc electrode for use in alkaline batteries comprises a mixture of 0.425 to 1.55 volume parts of zinc oxide with a volume part of a metallic oxide chosen from the group consisting of: calcium oxide, barium oxide, and mixtures thereof, together with hydroxy-ethyl cellulose, an oxide dispersant chosen from the group consisting of: soap derivatives, anionic polyelectrolytes, anionic surfactants, and mixtures thereof, and a binder. The electrode is prepared by mixing zinc oxide with the chosen metallic oxide in an aqueous medium such as water or potassium hydroxide, stirring overnight, filtering and drying the mixture, optionally adding a further small amount of zinc oxide, optionally adding other metallic oxides, and adding hydroxy-ethyl cellulose, an oxide dispersant, and a binder. The aqueous paste os slurry thus formed is placed on a conductive substrate, drawn through a sizing gap, cut and dried, to form low cost pasted zinc oxide electrodes.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 19, 2010
    Assignee: Powergenix Systems, Inc.
    Inventor: Jeffrey Phillips
  • Patent number: 7816030
    Abstract: Electrodes and electrolytes for nickel-zinc secondary battery cells possess compositions that limit dendrite formation and other forms of material redistribution in the zinc electrode. In addition, the electrolytes may possess one or more of the following characteristics: good performance at low temperatures, long cycle life, low impedance and suitability for high rate applications.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: October 19, 2010
    Assignee: Powergenix Systems, Inc.
    Inventors: Jeffrey Phillips, Samaresh Mohanta
  • Publication number: 20100092857
    Abstract: A nickel zinc battery cell includes a metallic zinc-based current collection substrate as a part of the negative electrode. The metallic zinc-based current collector may be made of or be coated with a zinc metal or zinc alloy material and may be a foil, perforated, or expanded material. Battery cells incorporating the zinc-based current collector exhibit good cycle lifetime and initial charge performance.
    Type: Application
    Filed: February 8, 2008
    Publication date: April 15, 2010
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Jeffrey Phillips, Samaresh Mohanta, Zheng Gang Fan, Ru Jun Ma, Feng Feng, Lou Uzel, Chi Yau, Jason Zhao, Zeiad M. Muntasser
  • Publication number: 20090233159
    Abstract: A nickel-zinc battery cell is formed with a negative can, a positive cap, and a jelly roll of electrochemically active positive and negative materials within. The inner surface of the can is protected with an anticorrosive material that may be coated or plated onto the can. Good electrical contact between the jelly roll and the cap is achieved through folding the nickel substrate over to contact a positive current collection disk.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 17, 2009
    Applicant: PowerGenix Systems, Inc.
    Inventors: Jeffrey Phillips, Franz Josef Kruger, Samaresh Mohanta, Sean Clinton, Ernest M. Rimanosky, Jason Zhao, Cecilia Maske, Zheng Gang Fan
  • Publication number: 20090208839
    Abstract: The nickel hydroxide particles for a nickel hydroxide electrode may be treated using an alkaline solution of a strong oxidizing agent such as sodium or potassium persulfate to modify the surface nickel hydroxide structure. The resulting modified surface structure has been found to impart various benefits to electrodes formed from the nickel hydroxide. It is believed that the oxidation of cobalt compounds at the surface of the nickel hydroxide particles results in a highly conductive cobalt compound that plays an important role in the high reliability, high stability and high capacity utilization of nickel electrodes as described herein.
    Type: Application
    Filed: April 29, 2009
    Publication date: August 20, 2009
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Mingming Geng, Jeffrey Phillips, Samaresh Mohanta
  • Publication number: 20090202904
    Abstract: Active material for a positive electrode of a rechargeable alkaline electrochemical cell is made with nickel hydroxide particles or cobalt-coated nickel hydroxide particles treated with strongly oxidizing reagents such as alkali metal persulfate in alkaline solution. The active material also may be made with cobalt-coated nickel hydroxide particles having a high percentage of cobalt(III) on a surface or an average cobalt oxidation state of about 3 measured across the particles. The treated nickel hydroxide or cobalt-coated nickel hydroxide decreases the cobalt solubility in the alkaline electrolyte and increases the high-rate charge and discharge capability. The lower cobalt solubility decreases cobalt migration that can increase self discharge and lead to premature failure.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 13, 2009
    Applicant: PowerGenix Systems, Inc.
    Inventors: Mingming Geng, Samaresh Mohanta, Jeffrey Phillips, Zeiad M. Muntasser, Jeff Barton
  • Patent number: 7550230
    Abstract: Electrodes and electrolytes for nickel-zinc secondary battery cells possess compositions that limit dendrite formation and other forms of material redistribution in the zinc electrode. In addition, the electrolytes may possess one or more of the following characteristics: good performance at low temperatures, long cycle life, low impedance and suitability for high rate applications.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: June 23, 2009
    Assignee: PowerGenix Systems, Inc.
    Inventors: Jeffrey Phillips, Samaresh Mohanta
  • Publication number: 20090090636
    Abstract: An improved Ni—Zn cell with a negative electrode substrate plated with tin or tin and zinc during manufacturing has a reduced gassing rate. The copper or brass substrate is electrolytic cleaned, activated, electroplated with a matte surface to a defined thickness range, pasted with zinc oxide electrochemically active material, and baked. The defined plating thickness range of 40-80 ?In maximizes formation of an intermetallic compound Cu3Sn that helps to suppress the copper diffusion from under plating layer to the surface and eliminates formation of an intermetallic compound Cu6Sn5 during baking to provide adequate corrosion resistance during battery operation.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Applicant: POWERGENIX SYSTEMS, INC.
    Inventors: Feng Feng, Jeffrey Phillips, Sam Mohanta, Jeff Barton, Zeiad M. Muntasser
  • Patent number: RE40727
    Abstract: A nickel zinc alkaline cell has a zinc oxide negative electrode supported on a conductive substrate, an alkaline electrolyte, and a positive electrode having nickel hydroxide paste supported on a conductive substrate. The negative zinc oxide electrode comprises 85% to 95% zinc oxide powder, 1% to 10% bismuth oxide, 1% to 2% of a binder, and 0.05% to 5% by weight of a fluoride salt chosen from the group consisting of: sodium, potassium, rubidium, caesium, lithium, and mixtures thereof. Typically, the fluoride salt is potassium fluoride, in the amount of 0.5% by weight of the zinc oxide.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: June 9, 2009
    Assignee: PowerGenix Systems, Inc.
    Inventor: Jeffrey Phillips