Patents Assigned to Precision Vascular Systems, Inc.
  • Patent number: 8939916
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 27, 2015
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Stephen C. Jacobsen, Clark C. Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 8936558
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 20, 2015
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Stephen C. Jacobsen, Clark C. Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 8932235
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: January 13, 2015
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Stephen C. Jacobsen, Clark C. Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 8915865
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of tree, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 23, 2014
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Stephen C. Jacobsen, Clark C. Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 8900163
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: December 2, 2014
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Stephen C. Jacobsen, Clark C. Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 8048004
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: November 1, 2011
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Clark C. Davis, Stephen C. Jacobsen, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund
  • Patent number: 7914466
    Abstract: A medical device for guiding through anatomy, such as a catheter or guidewire, with a tubular body that has been slotted to enhance bending flexibility, and a polymer liner with an anti-collapsing structure, and a method of making a medical device with a kink-resistant corrugated tubular member and an anti-collapsing structure. Anti collapsing structures may be helical or annular, and may be wire, such as ribbon wire, grooves in the liner, corrugations, or a braid. Liners may be bonded to the anti-collapsing structure, or may have two layers, with the anti-collapsing structure between the layers. Corrugations may be formed between sections of the anti-collapsing ‘structure with heat, pressure, stretching, compression, a mold, or a combination thereof, and may extend inward or outward. Shape or wall thickness may vary along the length to provide a varying bending stiffness. Slots may be formed in groups of two, three, or more, and adjacent groups may be rotated about the axis forming a helical pattern.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: March 29, 2011
    Assignee: Precision Vascular Systems, Inc.
    Inventors: Clark C. Davis, Kevin T. Olson, Dewayne C. Fox
  • Publication number: 20080077119
    Abstract: A medical device or intravascular device, and methods of use. The devices may be tubular and may have a flexible polymer tip. The body may be nitinol and may have cuts part way through along its length to facilitate bending. The device may have a liner which may extend through the tip or form the tip. The device may have markers readily visible on an X-ray viewer during insertion. The tip may have an anti-collapsing structure and may be shaped before use to perform a medical procedure such as treating an aneurysm. The device may have a strong fiber through it for complete removal. The method may include selecting the device, bending the tip, setting the shape, and inserting the device into the patient's anatomy. The shape of the tip may be set by heating with steam and then removing a mandrel.
    Type: Application
    Filed: December 6, 2007
    Publication date: March 27, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: EDWARD SNYDER, CLARK DAVIS, TODD TURNLUND
  • Publication number: 20080021401
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of tree, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021400
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and s soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021408
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021405
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021348
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021406
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021404
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021403
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021402
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: Stephen Jacobsen, Clark Davis, Clay Northrop, Ted Layman, Kevin Olson, Edward Snyder, D. Backman, Todd Turnlund
  • Publication number: 20080021407
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: STEPHEN JACOBSEN, CLARK DAVIS, CLAY NORTHROP, TED LAYMAN, KEVIN OLSON, EDWARD SNYDER, D. BACKMAN, TODD TURNLUND
  • Publication number: 20080021347
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 31, 2007
    Publication date: January 24, 2008
    Applicant: PRECISION VASCULAR SYSTEMS, INC.
    Inventors: Stephen Jacobsen, Clark Davis, Clay Northrop, Ted Layman, Kevin Olson, Edward Snyder, D. Backman, Todd Turnlund
  • Publication number: 20040181174
    Abstract: Medical devices for navigation through anatomy, including guidewires, which may have a core wire, a slotted tubular member, or both. Embodiments may have coils, including non-circular cross-section edge-wound marker coils, extended coil tips, and soldered or glued mesial joint coils. Core wires may have a step, ridge, or taper at the joints to the tubular member, and may be flattened at the distal tip. Radiopaque material may be located inside the tubular member, and the distal tip may be heat treated to make it shapeable. Additional tubular members or coils may be used concentrically or in line and may enhance flexibility, provide radiopacity, reduce friction, or reduce material or manufacturing cost. Tubular members may be chamfered or tapered continuously or incrementally. Slots may be arranged in groups, such as groups of three, and may be equal in depth or unequal in depth to provide a steerable or compressible tip.
    Type: Application
    Filed: July 25, 2003
    Publication date: September 16, 2004
    Applicant: Precision Vascular Systems, Inc.
    Inventors: Clark C Davis, Clay W. Northrop, Ted W. Layman, Kevin T. Olson, Edward J. Snyder, D. Kent Backman, Todd H. Turnlund