Abstract: A novel solar inverter circuit is used to connect a solar photovoltaic (PV) array with an alternating current (AC) voltage source to convert direct current (DC) power from the PV array to AC power. The solar inverter circuit employs the current-voltage (I-V) characteristic of the PV or solar cell, and an H-Bridge circuit with gate controller. The gate controller synchronizes the H-bridge with the AC voltage source. The PV array and the solar inverter circuit can plug directly into a residential AC plug and provides electrical power as a supplementary AC supply. Electrical energy required by the home appliances is supplied by the municipal AC line and solar energy concurrently. Advantages of the solar inverter circuit of the present invention include the flexibility of using the solar inverter circuit with any number of solar cell panels through the implementation of an impedance transformer, and the implementation of an additional, optional output for DC battery charging.
Abstract: A circuit for converting solar energy into ac power for supplementary household power has a number of solar photovoltaic cells connected in parallel in groups, with the various groups connected in series (30), and a bridge arrangement of four switching devices (31, 32, 33, 34) each operated to pass current in one direction, with the series-connected groups of cells (30) connected between positive and negative bridge terminals (1, 2), and means for connecting the bridge arms (3, 4) across the primary coils of a transformer (312), with the secondary coils thereof connected to the switching devices to control the phase of passed current, the output at the bridge arms (3, 4) being connectable to the household ac.