Patents Assigned to President and Fellows of the Harvard College
  • Publication number: 20230372407
    Abstract: Provided herein are methods of use involving Bacteroides glycolipid compositions.
    Type: Application
    Filed: June 15, 2021
    Publication date: November 23, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: Dennis L. Kasper, Kailyn L. Stefan
  • Patent number: 11821109
    Abstract: The invention describes a method for the synthesis of compounds comprising the steps of: (a) compartmentalising two or more sets of primary compounds into microcapsules; such that a proportion of the microcapsules contains two or more compounds; and (b) forming secondary compounds in the microcapsules by chemical reactions between primary compounds from different sets; wherein one or both of steps (a) and (b) is performed under microfluidic control; preferably electronic microfluidic control The invention further allows for the identification of compounds which bind to a target component of a biochemical system or modulate the activity of the target, and which is co-compartmentalised into the microcapsules.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: November 21, 2023
    Assignees: President and Fellows of Harvard College, United Kingdom Research and Innovation
    Inventors: Andrew David Griffiths, David A. Weitz, Darren Roy Link, Keunho Ahn, Jerome Bibette
  • Patent number: 11820969
    Abstract: Provided herein are systems, compositions, and methods of introducing protective and/or loss-of-function variants of CCR5 and CCR2. Variants may be introduced using a CRISPR/Cas9-based nucleobase editor or other guide nucleotide sequence-programmable DNA binding protein domain-based fusion protein described herein. Further provided herein are compositions and methods of preventing and treating conditions related to HIV infection and progression as well as to AIDS.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: November 21, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Juan Pablo Maianti, David R. Liu
  • Patent number: 11821110
    Abstract: Provided herein are methods of detecting an antibody directed against a pathogen and uses thereof.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: November 21, 2023
    Assignees: The Brigham and Women's Hospital, Inc., President and Fellows of Harvard College
    Inventors: Stephen J. Elledge, Harry B. Larman, Tomasz Kula, George Xu
  • Publication number: 20230365912
    Abstract: The present disclosure is generally directed to systems and methods for retrieving cells from a continuous culture microfluidic device. In some aspects, a system that allows for selective extraction of one or more cells of interest from an arbitrary population of cells using a high-throughput negative cell selection technique is disclosed herein. For example, the system may comprise a microfluidic device comprising a plurality of cell growth trenches configured to contain cells and a patterned light source capable of selectively killing unwanted cells contained within the device. Coupled with time-lapse imaging, one or more cells of interest within the device may, in some aspects, be identified and extracted with a relatively high extraction efficiency, e.g., at least 99.9% of cells of interest may be extracted from the plurality of cells. In addition, some aspects of the disclosure are directed to methods for using such a system.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 16, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: Johan Paulsson, Scott Luro
  • Publication number: 20230366011
    Abstract: Provided herein, in some aspects, are methods of imaging molecules without a microscope or other specialized equipment, referred to herein as “microscope-free imaging (MFI).” Herein, “molecular instruments” (e.g., DNA-based and protein-based molecules) are used, instead of microscopes, in a “bottom-up” approach for inspecting molecular targets.
    Type: Application
    Filed: March 28, 2023
    Publication date: November 16, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: Thomas E. Schaus, Xi Chen, Peng Yin
  • Publication number: 20230365524
    Abstract: The present invention provides triazolone compounds of general formula (I): in which R1, R2, R3, R4, and R5 are as defined herein, methods of preparing said compounds, intermediate compounds useful for preparing said compounds, pharmaceutical compositions and combinations comprising said compounds and the use of said compounds for manufacturing pharmaceutical compositions for the treatment and prophylaxis of diseases, in particular hyperproliferative disorders, as a sole agent or in combination with other active ingredients.
    Type: Application
    Filed: April 20, 2023
    Publication date: November 16, 2023
    Applicants: Bayer Aktiengesellschaft, Bayer Pharma Aktiengesellschaft, The Broad Institute, Inc., President and Fellows of Harvard College, The General Hospital Corporation
    Inventors: Stefan Nikolaus GRADL, Duy NGUYEN, Knut EIS, Judith GÜNTHER, Timo STELLFELD, Andreas JANZER, Sven CHRISTIAN, Thomas MÜLLER, Sherif El SHEIKH, Han Jie ZHOU, Changjia ZHAO, David B. SYKES, Steven James FERRARA, Kery LIU, Michael KRÖBER, Claudia MERZ, Michael NIEHUES, Martina SCHÄFER, Katja ZIMMERMANN, Carl Friedrich NISING
  • Patent number: 11815528
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: November 14, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Michael S. Grinolds, Sungkun Hong, Patrick Maletinsky, Amir Yacoby
  • Patent number: 11815668
    Abstract: A method of fabricating a visible spectrum optical component includes: providing a substrate; forming a resist layer over a surface of the substrate; patterning the resist layer to form a patterned resist layer defining openings exposing portions of the surface of the substrate; performing deposition to form a dielectric film over the patterned resist layer and over the exposed portions of the surface of the substrate, wherein a top surface of the dielectric film is above a top surface of the patterned resist layer; removing a top portion of the dielectric film to expose the top surface of the patterned resist layer and top surfaces of dielectric units within the openings of the patterned resist layer; and removing the patterned resist layer to retain the dielectric units over the substrate.
    Type: Grant
    Filed: May 25, 2022
    Date of Patent: November 14, 2023
    Assignees: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Robert C. Devlin, Mohammadreza Khorasaninejad, Federico Capasso, Hongkun Park, Alexander Arthur High
  • Patent number: 11814398
    Abstract: The present invention provides novel compounds (e.g., compounds of Formulae (I), (II), (III), (IV)) having tumor vascular remodeling effect and/or anti-CAF (Cancer Associated Fibroblasts) activity, or pharmaceutically acceptable salts thereof, optionally in a pharmaceutically acceptable carrier, and a medical uses thereof.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: November 14, 2023
    Assignees: President and Fellows of Harvard College, Eisai R&D Management Co., LTD.
    Inventors: Yoshito Kishi, Kazunobu Kira, Ken Ito
  • Publication number: 20230357690
    Abstract: The present disclosure relates to a microfluidic devices and methods for culturing bone marrow cells. Aspects include methods of preparing microfluidic devices and culturing bone marrow cells with the microfluidic devices. In some aspects, a method includes providing a microfluidic device having an upper chamber, a lower chamber, and a porous membrane separating the upper chamber from the lower chamber. The method further includes seeding walls of the lower chamber and a bottom surface of the membrane with endothelial cells. The method further includes providing a matrix within the upper chamber. The matrix includes fibrin gel and bone marrow cells. The method further includes filling or perfusing the upper chamber with a media.
    Type: Application
    Filed: June 28, 2023
    Publication date: November 9, 2023
    Applicants: President and Fellows of Harvard College, The General Hospital Corporation
    Inventors: David Benson Chou, Liliana S. Teixeira Moreira Leijten, Arianna Rech, Richard Novak, Donald E. Ingber, Yuka Milton, Viktoras Frismantas, Oren Levy
  • Publication number: 20230357286
    Abstract: Provided are new nickel./zirconium-mediated coupling reactions useful in the synthesis of ketone-containing compounds, e.g., halichondrin natural products and related molecules. A feature of the present disclosure is the use of a nickel(I) catalyst in tandem with a nickel (II) catalyst in the Ni/Zr-mediated coupling reactions. Without wishing to be bound by any particular theory, the nickel (I) catalyst selectively activates the electrophilic coupling partner (i.e., the compound of Formula (A)), and the nickel(ll) catalyst selectively activates the nucleophilic coupling partner (i.e., a thioester of Formula (B)). This dual catalyst system leads to improved coupling efficiency and eliminates the need for a large excess of one of the coupling partners (i.e., a compound of Formula (A) or (B)).
    Type: Application
    Filed: July 24, 2020
    Publication date: November 9, 2023
    Applicant: President and Fellows of Harvard College
    Inventors: Yoshito Kishi, Atsushi Umehara
  • Publication number: 20230358740
    Abstract: The technology described herein is directed to methods for detection of microbes and microbe components. In some embodiments of any of the aspects, the methods comprise methods of microbe isolation, sample preparation, mass spectrometry, or analysis. In some embodiments of any of the aspects, such methods can be applied to detect at least one microbe or at least one microbial component in a sample, including not limited to a patient sample, an animal model sample, an environmental sample, or a non-biological sample.
    Type: Application
    Filed: January 8, 2021
    Publication date: November 9, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mark Joseph CARTWRIGHT, Michael SUPER, Donald E. INGBER, Jennifer GRANT, Justin SCOTT, Shannon Catherine DUFFY, Sahil LOOMBA
  • Publication number: 20230357689
    Abstract: Described herein are methods inducing the uptake of an agent by a cell. Aspects of the invention relate to physically compressing the cell to induce perturbations (e.g., holes) in the cell membrane or wall. An agent is taken up by the cell through induced perturbations.
    Type: Application
    Filed: March 20, 2023
    Publication date: November 9, 2023
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Charles James Baker, Ghee Chuan Lai, Dirk Landgraf, Burak OKumus, Johan Paulsson
  • Publication number: 20230357766
    Abstract: The disclosure provides modified pegRNAs comprising one or more appended nucleotide structural motifs which increase the editing efficiency during prime editing, increase half-life in vivo, and increase lifespan in a cell. Modifications include, but are not limited to, an aptamer (e.g., prequeosim-1 riboswitch aptamer or “evopreQi-1”) or a variant thereof, a pseudoknot (the MMLV viral genome pseudoknot or “Mpknot-1”) or a variant thereof, a tRNA (e.g., the modified tRNA used by MMLV as a primer for reverse transcription) or a variant thereof, or a G-quadruplex or a variant thereof. The disclosure further provides prime editor complexes comprising the modified pegRNAs and having improved characteristics and/or performance, including stability, improved cellular lifespan, and improved editing efficiency.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 9, 2023
    Applicants: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, James William Nelson, Peyton Barksdale Randolph, Andrew Vito Anzalone, Simon Shen, Kelcee Everette, Peter J. Chen
  • Patent number: 11806441
    Abstract: Provided are fast relaxing hydrogels that are useful for regulating cell behavior and enhancing tissue regeneration, e.g., bone regeneration.
    Type: Grant
    Filed: June 15, 2021
    Date of Patent: November 7, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Luo Gu, Ovijit Chaudhuri, Nathaniel D. Huebsch, David J. Mooney, Max Carlton Darnell, Simon Young
  • Patent number: 11806372
    Abstract: This application provides for methods of treatment for IBD, especially in subjects who have R. gnavus species or R. gnavus group IBD strains as a component of their microbiome. The application also provides for methods of diagnosing IBD, as well as kits for use in the claimed methods.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: November 7, 2023
    Assignees: The Broad Institute, Inc., The General Hospital Corporation, President and Fellows of Harvard College
    Inventors: Andrew Brantley Hall, Ramnik Xavier, Curtis Huttenhower, Moran Yassour, Hera Vlamakis
  • Patent number: 11807871
    Abstract: A microfluidic device is directed to sustaining a complex microbial community in direct and indirect contact with living human intestinal cells in vitro. The device includes a first microchannel having cultured cells of a human intestinal epithelium and microbiota, the first microchannel further having a first level of oxygen. The device further includes a second microchannel having cultured cells of a vascular endothelium, the second microchannel further having a second level of oxygen. The device also includes a membrane located at an interface region between the first microchannel and the second microchannel, the membrane being composed of an oxygen-permeable material or further having pores via which oxygen flows between the first microchannel and the second microchannel to form a physiologically-relevant oxygen gradient.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: November 7, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Richard Novak, Sasan Jalili-Firoozinezhad, Francesca S. Gazzaniga, Elizabeth L. Calamari, Diogo M. Camacho, Bret A. Nestor, Cicely Fadel, Michael L. Cronce, Dennis L. Kasper, Donald E. Ingber, Amir Bein
  • Patent number: 11807895
    Abstract: A method for detecting oncogenic growth and viability, and/or degree of cellular transformation and/or identifying an agent that inhibits cellular transformation is disclosed. The method including: providing a cellular sample, such as a sample of cells obtained from a subject or a cell line; culturing the cellular sample in low attachment conditions; and detecting growth and7or cell viability of the sample, wherein increased growth relative and/or viability relative to a control or control level indicative of basal growth and/or viability indicates cellular transformation. In some embodiments, the method includes introducing a n expression vector into cells of the cellular sample, wherein the expression vector comprises a gene product expression sequence being tested for transformation ability. In some embodiments the cellular sample is contacted with a test agent and growth and/or cell viability of the sample is determined to determine if the agent inhibits transformation.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 7, 2023
    Assignees: THE BROAD INSTITUTE, INC., DANA FARBER CANCER INSTITUTE, INC., PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Asaf Rotem, Kevin Struhl, Paul Blainey, Liyi Xu
  • Patent number: 11807677
    Abstract: Described herein are engineered microbe-targeting molecules, microbe-targeting articles, kits comprising the same, and uses thereof. Such microbe-targeting molecules, microbe-targeting articles, or the kits comprising the same can not only bind or capture of a microbe or microbial matter thereof, but they also have improved capability (e g, enhanced sensitivity or signal intensity) of detecting a microbe or microbial matter. Thus, the microbe-targeting molecules, microbe-targeting articles, and/or the kit described herein can be used in various applications, e.g., but not limited to assays for detection of a microbe or microbial matter, diagnostic and/or therapeutic agents for diagnosis and/or treatment of an infection caused by microbes in a subject or any environmental surface, and/or devices for removal of a microbe or microbial matter from a fluid.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: November 7, 2023
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Alexander Watters, Brendon Dusel, Michael Super, Mark Cartwright, Donald E. Ingber