Patents Assigned to President & Fellow of Harvard College
  • Patent number: 11918984
    Abstract: Disclosed are compounds, methods, reagents, systems, and kits for the preparation and utilization of monomeric or polymeric metal-based compounds. These metal-based compounds are organometallic catalysts composed of substituted dipyrrin ligands bound to transition metals. C—H bond functionalization catalysis can be performed with the disclosed organometallic catalysts to yield C—N bonds to generate substituted bicyclic, spiro, and fused nitrogen-containing heterocycles, all common motifs in various pharmaceutical and bioactive molecules.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: March 5, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Theodore Alexander Betley, Alexandre Mikhailine, Claudia Kleinlein, Yuyang Dong, Yunjung Baek
  • Patent number: 11919971
    Abstract: This disclosure provides, e.g., methods for coupling Formation of Surface Carboxylates on PES an entity to a solid substrate. The method can comprise treating the with Exposure Time substrate with a plasma, e.g., a CO2 plasma, to increase its reactivity. The entity can be, e.g., a biological polymer that binds a microbe. Substrates produced by these methods can be used in a variety of applications, including hemodialysis and diagnostic assays.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: March 5, 2024
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Daniel Christopher Leslie, Thomas Doyle, Anna Waterhouse, Melissa Rodas, Alexander L. Watters, Michael Super, Donald E. Ingber
  • Patent number: 11920181
    Abstract: Some aspects of this disclosure provide strategies, methods, and reagents for determining nuclease target site preferences and specificity of site-specific endonucleases. Some methods provided herein utilize a novel “one-cut” strategy for screening a library of concatemers comprising repeat units of candidate nuclease target sites and constant insert regions to identify library members that can been cut by a nuclease of interest via sequencing of an intact target site adjacent and identical to a cut target site. Some aspects of this disclosure provide strategies, methods, and reagents for selecting a site-specific endonuclease based on determining its target site preferences and specificity. Methods and reagents for determining target site preference and specificity are also provided.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Vikram Pattanayak
  • Patent number: 11923581
    Abstract: The invention features redox flow batteries and compound useful therein as negolytes or posolytes. The batteries and compounds are advantageous in terms of being useable in water solutions at neutral pH and have extremely high capacity retention. Suitable negolytes are diquaternized bipyridines, suitable posolytes are water-soluble ferrocene derivatives.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 5, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Michael J. Aziz, Eugene Beh
  • Publication number: 20240067957
    Abstract: Genetic circuits that control transgene expression in response to pre-defined transcriptional cues would enable the development of smart therapeutics. The present disclosure relates to engineered programmable single-transcript RNA sensors in which adenosine deaminases acting on RNA (ADARs) autocatalytically convert trigger hybridization into a translational output. This system amplifies the signal from editing by endogenous ADAR through a positive feedback loop. Amplification is mediated by the expression of a hyperactive, minimal ADAR variant and its recruitment to the edit site via an orthogonal RNA targeting mechanism. This topology confers high dynamic range, low background, minimal off-target effects, and a small genetic footprint. The circuits and systems disclosed herein leverage an ability to detect single nucleotide polymorphisms and modulate translation in response to endogenous transcript levels in mammalian cells.
    Type: Application
    Filed: June 22, 2023
    Publication date: February 29, 2024
    Applicants: Massachusetts Institute of Technology, President and Fellows of Harvard College
    Inventors: James J. Collins, Raphael Gayet, Katherine IIia, Shiva Razavi, Nathaniel Tippens, Kehan Zhang, Jack Chen, Jonathan Chen, Makoto Lalwani
  • Patent number: 11912985
    Abstract: The present disclosure provides systems, compositions, and methods for simultaneously editing both strands of a double-stranded DNA sequence at a target site to be edited. Further provided herein are pharmaceutical compositions, polynucleotides, vectors, cells, and kits for simultaneously editing both strands of a double-stranded DNA sequence.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: February 27, 2024
    Assignees: The Broad Institute, Inc., President and Fellows of Harvard College
    Inventors: David R. Liu, Andrew Vito Anzalone, Jonathan Ma Levy, Xin Gao, Christopher J. Podracky
  • Patent number: 11912664
    Abstract: Provided herein are methods, systems, kits, and compositions useful for determining small molecule-protein interactions and protein-protein interactions. The photo-click tags provided herein can be conjugated to a small molecule or amino acid analog to provide compounds that can be integrated into a protein through photo-conjugation, allowing for identification of a small molecule-protein interaction or protein-protein interaction to elucidate the small molecules mechanism of action or the protein targeted by the small molecule. In some embodiments, the photo-click tags comprise a photo-conjugation moiety and a click chemistry handle, allowing for the attachment of various functional groups (e.g., affinity tags) to the small molecule or amino acid analog.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 27, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Christina M. Woo, Jinxu Gao, Yuka Amako, Chia Fu Chang, Zhi Lin, Hung-Yi Wu
  • Patent number: 11913040
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. Another drawback of TALEs is their tendency to bind and cleave off-target sequence, which hampers their clinical application and renders applications requiring high-fidelity binding unfeasible. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 27, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Patent number: 11913872
    Abstract: An apparatus for measuring a characteristic of a sample using a centrifuge and optical components is disclosed. The centrifuge may be a standard benchtop centrifuge. The optical components may be sized and dimensioned to fit, along with the sample, inside the centrifuge.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: February 27, 2024
    Assignees: President and Fellows of Harvard College, Children's Medical Center Corporation
    Inventors: Darren Yang, Andrew Ward, Wesley Philip Wong, Kenneth Anders Halvorsen
  • Patent number: 11913044
    Abstract: Some aspects of this disclosure relate to strategies, systems, methods, compositions, and kits that are useful for production (e.g., evolution) of cytidine deaminase protein variants that are characterized by increased soluble expression and/or stability relative to the wild-type cytidine deaminase protein from which they are evolved. In some embodiments, evolved cytidine deaminase variants described by the disclosure are useful for incorporation into targeted nucleic acid editing proteins, for example in fusion proteins with a Cas9 domain or variant thereof.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: February 27, 2024
    Assignees: President and Fellows of Harvard College, The Broad Institute, Inc.
    Inventors: David R. Liu, Tina Wang
  • Patent number: 11911996
    Abstract: Methods and apparatus for modulating light using a tunable light modulation device. The tunable light modulation devices comprises an elastomer structure including at least one elastomer layer, a compliant electrode network of conducting fibers arranged on a first surface of the at least one elastomer layer, a patterned electric conductor arranged on a second surface of the at least one elastomer layer opposite the first surface. The patterned electric conductor includes a plurality of individually-addressable sections, and the compliant electrode network is configured to compress the at least one elastomer layer in the presence of an electric field between the compliant electrode network and one or more of the individually-addressable sections of the patterned electric conductor to produce a voltage-dependent roughening of the at least one elastomer layer.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 27, 2024
    Assignees: President and Fellows of Harvard College, Cardinal CG Company
    Inventors: Kezi Cheng, Aftab Hussain, Keith Burrows, David Clarke
  • Publication number: 20240061219
    Abstract: A method of fabricating a visible spectrum optical component includes: providing a substrate; forming a resist layer over a surface of the substrate; patterning the resist layer to form a patterned resist layer defining openings exposing portions of the surface of the substrate; performing deposition to form a dielectric film over the patterned resist layer and over the exposed portions of the surface of the substrate, wherein a top surface of the dielectric film is above a top surface of the patterned resist layer; removing a top portion of the dielectric film to expose the top surface of the patterned resist layer and top surfaces of dielectric units within the openings of the patterned resist layer; and removing the patterned resist layer to retain the dielectric units over the substrate.
    Type: Application
    Filed: November 3, 2023
    Publication date: February 22, 2024
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Robert C. DEVLIN, Mohammadreza KHORASANINEJAD, Federico CAPASSO, Hongkun PARK, Alexander HIGH
  • Publication number: 20240060121
    Abstract: The present disclosure generally relates to systems and methods for multi-focal imaging, for example, for determining nucleic acids in cells or other samples. In some cases, multiple focal planes may simultaneously be determined, e.g., by using a plurality of detectors, such as a plurality of cameras, which image the same sample, but at least some of which are focused on different focal planes within the sample. Thus, the sample may be imaged in 3 dimensions, e.g., without sample refocusing. In certain cases, this may improve the resolution of imaging, in space and/or time. Various embodiments can be used to increase imaging throughput and/or resolution in image-based approaches, e.g., for single-cell molecular profiling such as multiplexed error robust fluorescence in situ hybridization (MERFISH), or for other applications.
    Type: Application
    Filed: November 19, 2020
    Publication date: February 22, 2024
    Applicants: President and Fellows of Harvard College, Children's Medical Center Corporation
    Inventors: Jeffrey R. Moffitt, Hazen P. Babcock
  • Patent number: 11906454
    Abstract: A microcalorimeter device capable of measuring cellular bioenergetics and systems that are limited in analytic volume. The microcalorimeter device provides sub-nWatt resolution and even tens of pico-Watt resolution, thus enabling resolution of the metabolic rate of a single cell.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: February 20, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Jinhye Bae, Joost J Vlassak
  • Patent number: 11904310
    Abstract: The present invention generally relates to a controlled fluidic device to develop spatially complex environments to enhance the rate of evolution in cell populations. The method further provides an enhanced understanding in the emergence, for example, drug resistance during cancer chemotherapy.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: February 20, 2024
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology, President and Fellows of Harvard College, Dana-Farber Cancer Institute, Inc.
    Inventors: Anindita Basu, Christopher B. Ford, Aviv Regev, David A. Weitz, Asaf Rotem, Kevin Struhl
  • Patent number: 11905623
    Abstract: Some aspects of the present disclosure provide methods for evolving recombinases to recognize target sequences that differ from the canonical recognition sequences. Some aspects of this disclosure provide evolved recombinases, e.g., recombinases that bind and recombine naturally-occurring target sequences, such as, e.g., target sequences within the human Rosa26 locus. Methods for using such recombinases for genetically engineering nucleic acid molecules in vitro and in vivo are also provided. Some aspects of this disclosure also provide libraries and screening methods for assessing the target site preferences of recombinases, as well as methods for selecting recombinases that bind and recombine a non-canonical target sequence with high specificity.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: February 20, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, David B. Thompson, Jeffrey L. Bessen
  • Patent number: 11906509
    Abstract: Systems and methods are provided for characterizing shuttle capture events in a nanopore sensor. The method first collects time-dependent current blockage signatures for at least one bias voltage. The method then identifies each signature as corresponding to a permanent or transient event. The method then generates a protein dynamics landscape (PDL) for the transient event signatures. The PDL comprises a set of histograms of nanopore current data and characterizes current through the nanopore during shuttle capture events. The method can then comprise identifying an entrance level blockage value based on the permanent event signatures. Permanent event captures can be determined by time duration which is larger than a certain threshold time value. Applying a voltage between the fluidic chambers above a threshold voltage level can be used to control that the vast majority of events are permanent.
    Type: Grant
    Filed: March 17, 2023
    Date of Patent: February 20, 2024
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Lene V. Hau, Jene A. Golovchenko
  • Publication number: 20240052331
    Abstract: The disclosure provides fusion proteins comprising a pleckstrin homology (PH) domain and a variant of Botulinum neurotoxin E (BoNT E) protease that cleaves certain non-canonical protein targets (e.g., PTEN). Fusion proteins described in the disclosure are useful for cleaving target proteins found in a cell, that is, in an intracellular environment. Aspects of the disclosure provide methods for inhibiting PTEN amount, activity, or function in a cell or subject, the methods comprising administering to a call or subject a fusion protein described herein.
    Type: Application
    Filed: December 17, 2021
    Publication date: February 15, 2024
    Applicants: The Board Institute, Inc., President and Fellows of Harvard College, Children's Medical Center Corporation
    Inventors: David R. Liu, Travis R. Blum, Min Dong, Hao Liu
  • Publication number: 20240053325
    Abstract: Provided herein is a reporter system for identifying a cytokine receptor modulator and uses thereof.
    Type: Application
    Filed: December 10, 2021
    Publication date: February 15, 2024
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Jun HUH, Guangqing LU
  • Patent number: 11897263
    Abstract: A subwavelength resonator for acoustophoretic printing comprises a hollow resonator body for local enhancement of an acoustic field integrated with a nozzle body for delivery of an ink into the acoustic field. The nozzle body has a first end outside the hollow resonator body and a second end inside the hollow resonator body, and includes a fluid channel extending between a fluid inlet at the first end and a fluid outlet at the second end. The fluid channel passes through a side wall of the hollow resonator body and includes at least one bend. During acoustophoretic printing, an ink delivered through the fluid channel of the nozzle body and out of the fluid outlet is exposed to a high-intensity acoustic field.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: February 13, 2024
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Daniele Foresti, Aleksandra Markovic, Jennifer A. Lewis