Patents Assigned to Primestar Solar Inc.
  • Publication number: 20130133689
    Abstract: Methods for cleaning a side edge of a thin film photovoltaic substrate utilizing a laser are provided. The method can include transporting the substrate in a machine direction to move the substrate past a first laser source, and focusing a first laser beam generated by the first laser source onto the side edge of the substrate such that the laser beam removes the thin film present on the side edge of the substrate. An apparatus is also generally provided for cleaning a first side edge and a second side edge of a thin film photovoltaic substrate.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PrimeStar Solar, Inc.
    Inventor: Luke W. Jacobson
  • Publication number: 20130133714
    Abstract: Thin film photovoltaic devices are provided that include a first submodule and a second submodule. An insulation layer can be positioned over first submodule and second submodule such that the insulation layer extends from a first bus bar to a second bus bar. A conductive link can be positioned on the insulation layer and electrically connected to the first bus bar and the second bus bar. An encapsulation substrate can be positioned over the first submodule and the second submodule. A first prong can extend through a first aperture defined in the encapsulation substrate to contact the conductive link to establish an electrical connection thereto, and a second prong can extend through a second aperture defined in the encapsulation substrate to contact the joint bus bar to establish an electrical connection thereto.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Troy Alan Berens
  • Publication number: 20130133713
    Abstract: Thin film photovoltaic devices including a first submodule and a second submodule are provided. In the device, a common insulation layer can be positioned over first submodule to extend from a joint bus bar to a first bus bar. A first lead can be electrically connected to the first bus bar, and a second lead can be electrically connected to the joint bus bar. A linking insulation layer can be positioned over the first submodule, the second submodule, and the joint bus bar such that the linking insulation layer extends from the first bus bar to the second bus bar. A conductive link can be electrically connected to the first bus bar and the second bus bar, but electrically isolated from the joint bus bar.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Troy Alan Berens
  • Publication number: 20130133693
    Abstract: Methods for cleaning a side edge of a thin film photovoltaic substrate are provided. A cleaning solution can be applied to a cleaning wheel that has a cleaning surface and is rotatable about an axis. The substrate can then be transported in a machine direction to move the substrate past the cleaning wheel such that the cleaning surface of the cleaning wheel contacts the side edge of the substrate allowing the cleaning solution to remove any thin film present on the side edge of the substrate. Apparatus is also generally provided for cleaning a side edge of a thin film photovoltaic substrate.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Joe Hunter, Leonard L. Boyer, Robert A. Garber, Donald F. Foust
  • Publication number: 20130134037
    Abstract: Ceramic sputtering targets and mixed metal targets are generally provided for forming a resistive transparent buffer layer. The ceramic sputtering target can include tin, oxygen, and cadmium (and optionally zinc) in relative amounts such that cadmium is included in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium. For example, the ceramic sputtering target can include tin oxide and cadmium oxide (and optionally zinc oxide) in relative amounts such that cadmium (and optional zinc) is included in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium (and optional zinc). The mixed metal sputtering target can include tin and cadmium such that cadmium is included in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium. The mixed metal sputtering target can further include zinc.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Publication number: 20130133731
    Abstract: Methods for forming a resistive transparent buffer layer on a substrate are provided. The method can include depositing a resistive transparent buffer layer on a transparent conductive oxide layer on a substrate. The resistive transparent buffer layer can comprise a cadmium doped tin oxide that has an as-deposited stoichiometry where cadmium is present in an atomic amount that is less than 33% of a total atomic amount of tin and cadmium. Zinc may also be provided in the resistive transparent buffer layer in certain embodiments. Additionally, thin film photovoltaic devices having such resistive transparent buffer layers are provided.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, George Theodore Dalakos, Anping Zhang, Allan Robert Northrup, Hong Piao, Laurie Le Tarte
  • Publication number: 20130122630
    Abstract: An apparatus and related process are provided for vapor deposition of a sublimated source material as a thin film on a photovoltaic (PV) module substrate. A deposition head is configured for sublimating a source material supplied thereto. The sublimated source material condenses onto a transport conveyor disposed below the deposition head. A substrate conveyor is disposed below the transport conveyor and conveys substrates in a conveyance path through the apparatus such that an upper surface of the substrates is opposite from and spaced below a lower leg of the transport conveyor. A heat source is configured adjacent the lower leg of the transport conveyor. The source material plated onto the transport conveyor is sublimated along the lower leg and condenses onto to the upper surface of substrates conveyed by the substrate conveyor.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 16, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: PRIMESTAR SOLAR, INC.
  • Publication number: 20130122631
    Abstract: A method for vapor deposition of a sublimated source material, such as CdTe, onto substrates in a continuous, non-stop manner through the apparatus is provided. The sublimated source material moves through a distribution plate and deposits onto the upper surface of the substrates as they are conveyed through the deposition area. The substrates move into and out of the deposition area through entry and exit slots that are defined by transversely extending entrance and exit seals. The seals are disposed at a gap distance above the upper surface of the substrates that is less than the distance or spacing between the upper surface of the substrates and the distribution plate. The seals have a ratio of longitudinal length (in the direction of conveyance of the substrates) to gap distance of from about 10:1 to about 100:1.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 16, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: PRIMESTAR SOLAR, INC.
  • Publication number: 20130112257
    Abstract: Thin film photovoltaic devices are generally provided. The thin film photovoltaic devices can include a transparent substrate that has a first volumetric thermal expansion coefficient; a thin film stack comprising a transparent conductive oxide layer, a photovoltaic heterojunction, and back contact layer; and, a composite encapsulation material on the back contact layer. The thin film stack is generally positioned between the transparent substrate and the composite encapsulation material. The composite encapsulation material can have a second volumetric thermal expansion coefficient that is within about +/?40% of the first volumetric thermal expansion coefficient of the transparent substrate.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Jed Emeron Isom, Scott Daniel Feldman-Peabody
  • Publication number: 20130115372
    Abstract: Apparatus and processes for vapor deposition of a sublimated source material as a thin film on a substrate are provided. The apparatus can include a deposition head; a receptacle disposed in the deposition head and configured for receipt of a source material; a heated distribution manifold disposed below the receptacle and configured to heat the receptacle to a degree sufficient to sublimate the source material within the receptacle; and, a deposition plate disposed below the distribution manifold and at a defined distance above a horizontal conveyance plane of an upper surface of a substrate conveyed through the apparatus. The distribution plate can define a pattern of passages therethrough that further distribute the sublimated source material passing through the distribution manifold. The distribution plate can have an emissivity in a range of about 0.7 to a theoretical maximum of 1.0 at a plate temperature during deposition.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Applicant: PrimeStar Solar, Inc.
    Inventors: Mark Jeffrey Pavol, Christopher Rathweg
  • Publication number: 20130112246
    Abstract: Thin film photovoltaic devices including a transparent substrate; a thin film stack comprising a transparent conductive oxide layer, a photovoltaic heterojunction, and back contact layer; and, an encapsulation material arranged such that the thin film stack is positioned between the transparent substrate and the encapsulation material are generally provided. The encapsulation material defines a rib element and can be generally positioned such that the rib element extends away from the thin film stack.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Jed Emeron Isom, Scott Daniel Feldman-Peabody
  • Patent number: 8430963
    Abstract: A system for vapor deposition of a thin film layer on photovoltaic (PV) module substrates includes a system for cool-down of the vacuum chamber through which substrates are conveyed in a vapor deposition process. The cool-down system is configured with the vacuum chamber to recirculate a cooling gas through the vacuum chamber and through an external heat exchanger in a closed cool-down loop. An associated method for forced cool-down of the vacuum chamber is also provided.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 30, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Jason Scott Paulman, Russell Weldon Black, Mark Jeffrey Pavol
  • Patent number: 8430966
    Abstract: An apparatus and related process are provided for vapor deposition of a sublimated source material as a thin film on a photovoltaic (PV) module substrate. A receptacle is disposed within a vacuum head chamber and is configured for receipt of a source material. A heated distribution manifold is disposed below the receptacle and includes a plurality of passages defined therethrough. The receptacle is indirectly heated by the distribution manifold to a degree sufficient to sublimate source material within the receptacle. A distribution plate is disposed below the distribution manifold and at a defined distance above a horizontal plane of a substrate conveyed through the apparatus. The distribution plate includes a pattern of holes therethrough that further distribute the sublimated source material passing through the distribution manifold onto the upper surface of the underlying substrate.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 30, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Christopher Rathweg, Max William Reed, Mark Jeffrey Pavol, Scott Daniel Feldman-Peabody, Russell Weldon Black
  • Publication number: 20130098111
    Abstract: Process and apparatus are generally provided for forming a thin film photovoltaic device. In one particular embodiment, the process includes: depositing a photovoltaic absorber layer on a glass substrate; heating the glass substrate to an anneal temperature; and quenching the glass substrate to cool the glass substrate to a quenched temperature in less than 10 seconds. The quenched temperature can be about 85° C. to about 200° C. less than the anneal temperature. The quenching atmosphere can have a quenching pressure of about 1 torr or more and can include an inert gas.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Yangang Andrew Xi, Frank Sanford Prescott, Scott Daniel Feldman-Peabody, Donald E. Rhonehouse, Mark Jeffrey Pavol
  • Publication number: 20130098294
    Abstract: A conveyor assembly for conveying substrates through a vapor deposition system includes a first carriage rail disposed at a drive side of the conveyor assembly. A roller position is defined along the carriage rail, and a drive wheel is disposed at the roller position and configured for driving engagement against a roller. The drive wheel includes an axial cylindrical extension and an elastomeric sleeve disposed on the cylindrical extension, with the elastomeric sleeve having a defined outer diameter. With this configuration, a roller placed in the roller position rests by gravity on the elastomeric sleeve and is rotationally driven by rotation of the drive wheel such that a substrate conveyed by the roller is displaced a defined distance for each rotation of the drive wheel as a function of the outer diameter of the elastomeric sleeve.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventor: Christopher Rathweg
  • Publication number: 20130084668
    Abstract: Apparatus for vapor deposition of a sublimated source material as a thin film on a photovoltaic module substrate is generally provided. The apparatus can include a deposition head; a distribution plate disposed below said distribution manifold and above an upper surface of a substrate transported through said apparatus and defining a pattern of passages therethrough; and, a carrying mechanism configured to transport the substrate in a machine direction under the distribution plate such that an upper surface of the substrate defines an arc in a cross-direction that is substantially perpendicular to the machine direction. Processes are also generally provided for vapor deposition of a sublimated source material to form thin film on a photovoltaic module substrate.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Fred Harper Seymour, Jeffrey Todd Knapp, Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, Mark Jeffrey Pavol
  • Publication number: 20130084669
    Abstract: An apparatus for vapor deposition of a sublimated source material as a thin film on a substrate is provided. The apparatus includes a receptacle configured to hold a source material and a distribution plate positioned above the receptacle. The distribution plate defines a pattern of passages therethrough. The apparatus also includes a conveyor configured to travel in a continuous loop such that its transfer surface passes above the distribution plate in a first direction to receive thereon sublimated source material passing through the passages of the distribution plate. The conveyor is also configured to travel in a second direction while carrying a substrate on its raised edges. A heating system heats the conveyor while it travels in the second direction to transfer the source material from the transfer surface to the substrate. A process is provided for vapor deposition of a sublimated source material to form thin film.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 4, 2013
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Russell Weldon Black, Scott Daniel Feldman-Peabody, Christopher Rathweg
  • Patent number: 8409407
    Abstract: Methods are generally provided for sputtering thin films on individual substrates. Individual substrates can be conveyed into a vacuum chamber to draw a sputtering pressure that is less than about 50 mTorr. Then, the individual substrates can be conveyed into a sputtering chamber and past a planar magnetron continuously sputtering a target by an ionized gas at the sputtering pressure such that a thin film is formed on a surface of the individual substrate. The target is subjected to a high frequency power having a frequency from about 400 kHz to about 4 MHz at power levels of greater than about 1 kW. In one particular embodiment, the method can be generally directed to sputtering thin films on individual substrates defining a surface having a surface area of about 1000 cm2 to about 2500 cm2.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Sean Timothy Halloran, Robert Dwayne Gossman, Russell Weldon Black
  • Patent number: 8402628
    Abstract: An apparatus for securing an article, a carrier including the apparatus, and a method involving the apparatus are disclosed. The apparatus includes a base having a channel and a pivot post, an engagement member for selectively engaging the article, a rotatable actuation member having a pivot feature corresponding to the pivot post, and a positioning member secured to the base. The engagement member is slidably positionable in the channel of the base, the positioning member establishes travel limits for the rotatable actuation member, and the positioning member urges the engagement member toward the article. Rotation of the rotatable actuation member slides the engagement member along the channel of the base, thereby securing the article by the force provided by the positioning member.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: March 26, 2013
    Assignee: Primestar Solar, Inc.
    Inventors: Shane P. Ballard, Edwin Jackson Little
  • Patent number: 8404177
    Abstract: A system and associated process are provided for recovering cadmium telluride (CdTe) that has plated onto components, such as components used in the manufacture of photovoltaic (PV) modules. The system includes a vacuum oven configured for maintaining a vacuum and being heated to a temperature effective for sublimating CdTe off of components placed within the oven. A collection member is disposed so that sublimated CdTe generated in the oven diffuses to the collection member. The collection member is maintained at a temperature effective for causing the sublimated CdTe to plate thereon. The collection member is subsequently processed to collect the plated CdTe.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: March 26, 2013
    Assignee: Primestar Solar, Inc.
    Inventor: Christopher Rathweg