Abstract: Helper neural network can play a role in augmenting authentication services that are based on neural network architectures. For example, helper networks are configured to operate as a gateway on identification information used to identify users, enroll users, and/or construct authentication models (e.g., embedding and/or prediction networks). Assuming, that both good and bad identification information samples are taken as part of identification information capture, the helper networks operate to filter out bad identification information prior to training, which prevents, for example, identification information that is valid but poorly captured from impacting identification, training, and/or prediction using various neural networks. Additionally, helper networks can also identify and prevent presentation attacks or submission of spoofed identification information as part of processing and/or validation.
Abstract: Helper neural network can play a role in augmenting authentication services that are based on neural network architectures. For example, helper networks are configured to operate as a gateway on identification information used to identify users, enroll users, and/or construct authentication models (e.g., embedding and/or prediction networks). Assuming, that both good and bad identification information samples are taken as part of identification information capture, the helper networks operate to filter out bad identification information prior to training, which prevents, for example, identification information that is valid but poorly captured from impacting identification, training, and/or prediction using various neural networks. Additionally, helper networks can also identify and prevent presentation attacks or submission of spoofed identification information as part of processing and/or validation.
Abstract: In one embodiment, a set of feature vectors can be derived from any biometric data, and then using a deep neural network (“DNN”) on those one-way homomorphic encryptions (i.e., each biometrics' feature vector) can determine matches or execute searches on encrypted data. Each biometrics' feature vector can then be stored and/or used in conjunction with respective classifications, for use in subsequent comparisons without fear of compromising the original biometric data. In various embodiments, the original biometric data is discarded responsive to generating the encrypted values. In another embodiment, the homomorphic encryption enables computations and comparisons on cypher text without decryption. This improves security over conventional approaches. Searching biometrics in the clear on any system, represents a significant security vulnerability. In various examples described herein, only the one-way encrypted biometric data is available on a given device.
Abstract: In one embodiment, a set of feature vectors can be derived from any biometric data, and then using a deep neural network (“DNN”) on those one-way homomorphic encryptions (i.e., each biometrics' feature vector) can determine matches or execute searches on encrypted data. Each biometrics' feature vector can then be stored and/or used in conjunction with respective classifications, for use in subsequent comparisons without fear of compromising the original biometric data. In various embodiments, the original biometric data is discarded responsive to generating the encrypted values. In another embodiment, the homomorphic encryption enables computations and comparisons on cypher text without decryption. This improves security over conventional approaches. Searching biometrics in the clear on any system, represents a significant security vulnerability. In various examples described herein, only the one-way encrypted biometric data is available on a given device.
Abstract: A set of distance measurable encrypted feature vectors can be derived from any biometric data and/or physical or logical user behavioral data, and then using an associated deep neural network (“DNN”) on the output (i.e., biometric feature vector and/or behavioral feature vectors, etc.) an authentication system can determine matches or execute searches on encrypted data. Behavioral or biometric encrypted feature vectors can be stored and/or used in conjunction with respective classifications, or in subsequent comparisons without fear of compromising the original data. In various embodiments, the original behavioral and/or biometric data is discarded responsive to generating the encrypted vectors. In another embodiment, distance measurable or homomorphic encryption enables computations and comparisons on cypher-text without decryption of the encrypted feature vectors. Security of such privacy enabled embeddings can be increased by implementing an assurance factor (e.g.