Abstract: A device with programmable resistance comprising memristive material between conductive electrodes on a substrate or in a film stack on a substrate is provided. During fabrication of a memristive device, a memristive layer may be hydrated after deposition of the memristive layer. The hydration of the memristive layer may be performed utilizing thermal annealing in a reducing ambient, implant or plasma treatment in a reducing ambient, or a deionized water rinse. Additionally, plasma-assisted etching of an electrode may be performed with hydration or in place of hydration to electroform devices in a batch, in situ process. The memristive device may be electroformed at low voltage and passivated to allow for device operation in air. Further, the memristive device is suitable for high throughput manufacturing.
Abstract: A resistive memory apparatus provides resistive memory material between conductive traces on a substrate or in a film stack on a substrate. The resistive memory apparatus may provide a sealed cavity or may utilize material obviating the need for the cavity. Methods and materials utilized to form the resistive memory apparatus are compatible with current microelectronic fabrication techniques. The resistive memory apparatus is nonvolatile or requires no power to maintain a programmed state. The resistive memory device may also be directly integrated with other microelectronic components.
Abstract: Various embodiments of the present invention pertain to memresistor cells that comprise: (1) a substrate; (2) an electrical switch associated with the substrate; (3) an insulating layer; and (3) a resistive memory material. The resistive memory material is selected from the group consisting of SiOx, SiOxH, SiOxNy, SiOxNyH, SiOxCz, SiOxCzH, and combinations thereof, wherein each of x, y and z are equal or greater than 1 or equal or less than 2. Additional embodiments of the present invention pertain to memresistor arrays that comprise: (1) a plurality of bit lines; (2) a plurality of word lines orthogonal to the bit lines; and (3) a plurality of said memresistor cells positioned between the word lines and the bit lines. Further embodiments of the present invention provide methods of making said memresistor cells and arrays.
Type:
Application
Filed:
September 8, 2011
Publication date:
October 10, 2013
Applicants:
Privatran, Inc., William Marsh Rice University
Inventors:
James M. Tour, Jun Yao, Burt Fowler, Glenn Mortland