Patents Assigned to Probe Technology
  • Publication number: 20130270431
    Abstract: A full bore spectral gas holdup tool that measures gas holdup that is corrected for effects of the flowstream lamination and the salinity of the liquid in the a flowstream. The basic methodology utilizes spectral data from two gamma ray detectors at different spacings from a nuclear source that emits gamma radiation. 57Co is the preferred source and the gamma ray detectors are scintillation spectrometers. In addition to a full bore gas holdup measurement, the spectral gas holdup tool also provides indications of the degree of flowstream lamination and the salinity of the liquid in the flowstream. An iterative data processing method optimizes the accuracy of the measured flowstream parameters.
    Type: Application
    Filed: May 24, 2011
    Publication date: October 17, 2013
    Applicant: PROBE TECHNOLOGY SERVICES, INC.
    Inventors: Daniel Carl Minette, Harry D. Smith, Phillip R. Phelps
  • Patent number: 8270248
    Abstract: A method for initializing the input of each of m receiver channels of a receiving transducer in a well logging tool comprising the steps of selecting a logging tool having a multi-element receiving transducer wherein each element of the multi-element receiving transducer operates in an anti-resonant mode below its resonant frequency, and executing a routine in an initialization mode wherein a predetermined number of run cycles are operated and receiver input responses are measured and averaged for each of the m channels while transmitter firing signals are disabled.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: September 18, 2012
    Assignee: Probe Technology Services, Inc.
    Inventors: Brian Hurst, John L. Marshall
  • Publication number: 20110149684
    Abstract: A method for initializing the input of each of m receiver channels of a receiving transducer in a well logging tool comprising the steps of selecting a logging tool having a multi-element receiving transducer wherein each element of the multi-element receiving transducer operates in an anti-resonant mode below its resonant frequency, and executing a routine in an initialization mode wherein a predetermined number of run cycles are operated and receiver input responses are measured and averaged for each of the m channels while transmitter firing signals are disabled.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 23, 2011
    Applicant: Probe Technology Services, Inc.
    Inventors: Brian Hurst, John L. Marshall
  • Patent number: 7911876
    Abstract: A method for initializing the input of each of m receiver channels of a receiving transducer in a well logging tool comprising the steps of selecting a logging tool having a multi-element receiving transducer wherein each element of the multi-element receiving transducer operates in an anti-resonant mode below its resonant frequency, and executing a routine in an initialization mode wherein a predetermined number of run cycles are operated and receiver input responses are measured and averaged for each of the m channels while transmitter firing signals are disabled.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: March 22, 2011
    Assignee: Probe Technology Services, Inc.
    Inventors: Brian Hurst, John L. Marshall
  • Patent number: 7802619
    Abstract: Methods and devices are provided for controlling detonation of explosives in a well bore for perforation or a well bore casing, which avoid or reduce unintentional or undesirable detonations while ensuring or increasing desirable detonations. An explosive trigger system or tool may comprise a central processing unit (CPU), memory, and one or more sensors disposed for measuring one or more downhole conditions. Downhole conditions may be measured with the sensor and then used to program detonation parameters (such as temperature or pressure) or preconditions (such as time or distance traveled) to the trigger system. Detonation can only occur when the programmed parameters or preconditions are satisfied. In this way, undesirable detonations are avoided by requiring certain preconditions to arming the trigger system.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: September 28, 2010
    Assignee: Probe Technology Services, INc.
    Inventors: Brian W. Hurst, John L. Marshall, David S. Wesson
  • Patent number: 7414918
    Abstract: A longitudinally segmented acoustic transducer for a cement bond logging (CBL) tool having a plurality of adjoining PZT ring-like segments driven synchronously in parallel by one or more pulses and caused to vibrate in an anti-resonant mode, substantially below the resonant frequency of an individual segment when used in a transmitting application. When used in a receiving application, each of the plurality of transducer rings are caused to vibrate by acoustic signals detected by the transducer array, also in an anti-resonant mode. High speed digital signal processing enables on-depth, high quality data for all azimuths at each depth to be obtained, processed, normalized and either sent to the surface in real time for each 20 Hz firing cycle, as the CBL tool is pulled toward the surface, or stored in a memory module in digital form for later retrieval. Built-in calibration factors used for normalizing the output signals to the operating conditions of use may be accessed at any time.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: August 19, 2008
    Assignee: Probe Technology Services, Inc.
    Inventors: Brian Hurst, John L. Marshall
  • Patent number: 7411864
    Abstract: A longitudinally segmented acoustic transducer for a cement bond logging (CBL) tool having a plurality of adjoining PZT ring-like segments driven synchronously in parallel by one or more pulses and caused to vibrate in an anti-resonant mode, substantially below the resonant frequency of an individual segment when used in a transmitting application. When used in a receiving application, each of the plurality of transducer rings are caused to vibrate by acoustic signals detected by the transducer array, also in an anti-resonant mode. High speed digital signal processing enables on-depth, high quality data for all azimuths at each depth to be obtained, processed, normalized and either sent to the surface in real time for each 20 Hz firing cycle, as the CBL tool is pulled toward the surface, or stored in a memory module in digital form for later retrieval. Built-in calibration factors used for normalizing the output signals to the operating conditions of use may be accessed at any time.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: August 12, 2008
    Assignee: Probe Technology Services, Inc.
    Inventors: Brian Hurst, John L. Marshall, David M. O'Connor
  • Patent number: 7372777
    Abstract: A longitudinally segmented acoustic transducer for a cement bond logging (CBL) tool having a plurality of adjoining PZT ring-like segments driven synchronously in parallel by one or more pulses and caused to vibrate in an anti-resonant mode, substantially below the resonant frequency of an individual segment when used in a transmitting application. When used in a receiving application, each of the plurality of transducer rings are caused to vibrate by acoustic signals detected by the transducer array, also in an anti-resonant mode. High speed digital signal processing enables on-depth, high quality data for all azimuths at each depth to be obtained, processed, normalized and either sent to the surface in real time for each 20 Hz firing cycle, as the CBL tool is pulled toward the surface, or stored in a memory module in digital form for later retrieval. Built-in calibration factors used for normalizing the output signals to the operating conditions of use may be accessed at any time.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 13, 2008
    Assignee: Probe Technology Services, Inc.
    Inventors: Brian Hurst, Marvin W. Beckman
  • Patent number: 6861855
    Abstract: This invention pertains to a high density interconnection test connector intended especially for verification of integrated circuits, including a plate supporting a multiplicity of conductive pins one of the ends of which forms a contact zone with the electronic circuit to be tested and the other end forms a contact zone with a connecting plate that has a connection means with the test equipment, with the conductive pins presenting a form that is capable of ensuring flexibility and including a longitudinal component, characterized in that the pins present a succession of at least three arc-shaped sections (4, 5, 6) in alternating directions extended on both sides by rectilinear segments that are mobile according to one degree of freedom in axial translation, with the pins being inserted in the front plates.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: March 1, 2005
    Assignee: Upsys Probe Technology SAS
    Inventors: Jean-Michel Jurine, Isabelle George
  • Patent number: 6850462
    Abstract: A method and device are shown for detecting the characteristics of a cement annulus between a casing in a borehole and the surrounding earth formations in a slickline cement bond logging operation. An acoustic logging tool is utilized which produces a pure signal downhole. The received acoustically transmitted energy produces electrical signals indicative of both the amplitude of the received energy and variable density log data. Both the amplitude data and the variable density log data are captured in memory downhole by the use of a time amplitude matrix which stores a limited number of data points for producing a cement bond log at the well surface.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: February 1, 2005
    Assignee: Probe Technology Services, Inc.
    Inventors: Ronald E. McDaniel, Tony M. Small, Dwight A. Bloomfield
  • Patent number: 6204674
    Abstract: This disclosure proposes an assembly structure for building probe cards to test square integrated circuit chips. The test probe card assembly structure has one or more wings located at 90° angles to each other upon which probes are laid in a parallel manner for attachment to a probe card. This allows 10 construction of the probe card so that probes touch contacts directly. The probe tips do not touch the contacts at an angle &thgr;, called the fan out angle. The probes also do not differ in their inclination angles &bgr;. As a result, the force at which the many probe tips touch the contacts is relatively constant throughout. In addition, the probe tips are less likely to scrub past the surface of the contact onto the insulation surface of the chip and in doing so damage it. The test probe card assembly structure also contains an epoxy groove, which controls epoxy flow so that the position of the probes stays aligned in the correct plane. The epoxy groove also prevents variance in beam length.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: March 20, 2001
    Assignee: Probe Technology, Inc.
    Inventors: Krzysztof Dabrowiecki, January Kister
  • Patent number: 6064215
    Abstract: A probe card for testing integrated circuits which maintains rigidity and probe alignment at elevated temperatures. The probe card has a number of probes radially oriented on an insulating plate with a nonuniform radial distribution. The probes extend through an insulating ring. The nonuniform radial distribution of probes has gaps which allows for bolt or attachment to attach a rigid plate to the insulating ring. The insulating plate can be made of printed circuit board material, the insulating ring can be made of epoxy. The rigid plate can be made of stainless steel or any other material that maintains rigidity at elevated temperatures. Preferably, the insulating plate also has a stiffener ring located opposite the insulating ring on the top side. The bolts extend through the stiffener ring. The insulating plate has vias which allow the probes to be electrically connected to test electronics located above a top side of the insulating plate.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: May 16, 2000
    Assignee: Probe Technology, Inc.
    Inventor: January Kister
  • Patent number: 5884395
    Abstract: This disclosure proposes an assembly structure for building probe cards to test square integrated circuit chips. The test probe card assembly structure has one or more wings located at 90.degree. angles to each other upon which probes are laid in a parallel manner for attachment to a probe card. This allows construction of the probe card so that probes touch contacts directly. The probe tips do not touch the contacts at an angle .theta., called the fan out angle. The probes also do not differ in their inclination angles .beta.. As a result, the force at which the many probe tips touch the contacts is relatively constant throughout. In addition, the probe tips are less likely to scrub past the surface of the contact onto the insulation surface of the chip and in doing so damage it. The test probe card assembly structure also contains an epoxy groove, which controls epoxy flow so that the position of the probes stays aligned in the correct plane. The epoxy groove also prevents variance in beam length.
    Type: Grant
    Filed: April 4, 1997
    Date of Patent: March 23, 1999
    Assignee: Probe Technology
    Inventors: Krzysztof Dabrowiecki, January Kister, Jerzy Lobacz
  • Patent number: 5764072
    Abstract: An assembly for making electrical connections to unpackaged integrated circuits using dual contact probes. The probes are said to be dual contact because they contact both the integrated device under test and the testing circuit. The probes have two tips. One tip is located at the end of each leg of the "U"-shaped probe. In operation, the probes are oriented with the legs of the probes extending horizontally and the tips pointing up and down, contacting the IC under test and the testing circuit. The probes are each made of a single piece of metal, and so provide an electrical connection between the IC and testing circuit. Flexing in the legs provides springiness for assuring good contact. The probes are mounted on a rigid block that is rigidly connected to the testing circuit and IC under test. Alignment plates are used to accurately position the probes. The plates can be horizontal or vertical and they have holes or slots that engage parts of the probes.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: June 9, 1998
    Assignee: Probe Technology
    Inventor: January Kister
  • Patent number: 5751157
    Abstract: This invention presents a method for aligning a set of probes in a circuit testing apparatus with a set of pads of a circuit under test and the apparatus designed according to this method. The alignment includes the steps of selecting a first group G1 of probes from the set, such that all probes in group G1 have the same tip length L1 and the same beam length L2, and mounting each probe of group G1 on a first mounting block which has a first through-hole for each probe and a first removable portion which includes the first through-hole. During the mounting step the tip portion is placed in the through-hole, the mounting portion is attached to the first mounting block and the first removable portion is discarded. Then, a second mounting block is placed on the first mounting block and a second group G2 of probes selected from the set is mounted it in the same manner as group G1 on the first block.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: May 12, 1998
    Assignee: Probe Technology
    Inventor: January Kister
  • Patent number: 5742174
    Abstract: A method and device for accurately mounting a probe in a probe card and for maintaining correct location of the probe tip as the probe is used for electronic testing of an IC pad. A membrane having a slot is attached to a support structure of a probe card. The probe tip is inserted into the slot and the probe is affixed to the membrane at the edges of the slot using silicon rubber. The probe is then mounted in the support structure which has a groove for receiving the probe. A distal end of the probe is bonded to the walls of the groove so that the probe is free to move vertically in the groove, but constrained from moving laterally to prevent side-buckling. The membrane and silicon rubber hold the probe tip in proper location during thermal treating of the probe card assembly. Once mounted in the probe card by this method, the probe and probe tip will maintain proper location as they are used for electronic testing of an IC pad.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: April 21, 1998
    Assignee: Probe Technology
    Inventors: January Kister, Jerzy Lobacz
  • Patent number: 5720098
    Abstract: The invention presents a method and a correspondingly designed probe for achieving uniform stress distribution when experiencing deflection. The probe has a top edge, a bottom edge, a tip, and a beam portion defined by selecting an inflection point along the top edge, such that the beam portion is contained between the tip and the inflection point, and the bottom edge below the beam portion is approximately straight, while the curvature of the top edge of the beam portion is fitted to a parabola. The tip has an outer edge, an inner edge, and a point of contact at the location where the outer and inner edges join. The inner edge is approximately straight while the curvature of the outer edge is fitted to a second parabola. The probe is preferably mounted in a support structure having a groove for receiving the probe such that the beam portion is free to move vertically in the groove and constrained laterally to prevent side-buckling.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: February 24, 1998
    Assignee: Probe Technology
    Inventor: January Kister
  • Patent number: 5644249
    Abstract: This invention presents a method and a mechanism for contacting a set of vertical probes of a circuit testing mechanism with a set of pads or bumps of a circuit under test. The vertical probes have a circular cross section, a tip portion of length L1 and a beam portion of length L2, such that the beam portion extends at a right angle to the tip portion. The tip portion is guided through a guide hole to the pads of the circuit under test and the beam portion secured by its end. In this geometry the contact force between the probe and the pad is described by the relation: ##EQU1## where D.sub.v is a vertical deflection of the probe, I is an area moment of inertia of the probe about its axis, and E is a Young's modulus of the probe. The tip length L1 and beam length L2 are selected for each of the vertical probes in such a way the contact force F in this relation is kept constant thus ensuring that the contact force F between the vertical probes and pads remains substantially equal.
    Type: Grant
    Filed: June 7, 1996
    Date of Patent: July 1, 1997
    Assignee: Probe Technology
    Inventor: January Kister
  • Patent number: 5422574
    Abstract: An embodiment of the present invention is a probe membrane with a center contact bump area and a plurality of signal connection sections separated by triangular reliefs in the membrane and terminating in a tangential row of contacts for wire bonding to a probe card. The system of triangular reliefs in the membrane allows the membrane to be puckered up such that the center contact bump area is raised approximately ninety mils above the general plane of the probe card. When the membrane has been fixed in its puckered up position, the triangular reliefs in the membrane form several radial rectangular slits. A translator gimbal attached to the center of the membrane provides stability and contact force for the contact bumps to a DUT. Areas of transparency in the vicinity of the contact bump area allows a user to view the I/O pads of a DUT for alignment with the contact bumps in the membrane.
    Type: Grant
    Filed: January 14, 1993
    Date of Patent: June 6, 1995
    Assignee: Probe Technology Corporation
    Inventor: January Kister