Abstract: A composition for removal of adhesives comprises a polar solvent, such as benzyl alcohol, in combination with thickeners, dry lubricants, and/or gelling agents to allow for penetration of the adhesive and transformation of the treated adhesive into a solid material that can be readily removed from a surface without forming sticky residue that adheres to the solid material or tool used to remove the adhesive.
Abstract: Compositions and methods are presented that selectively dissolve calcium from a variety of cementitious materials without dissolving or otherwise degrading calcium silica hydrate (CSH). Preferably, contemplated compositions comprise guanidine bisulfate hydrochloride, which can be prepared from a reaction of urea, hydrochloric acid, and sulfamic acid. Therefore, it is especially contemplated that the compositions contemplated herein are particularly suitable to clean or otherwise condition surfaces of cured concrete, Portland cement-based material, or an aggregate containing CSH.
Abstract: Contemplated compositions and methods for protection of concrete and various other cementitious materials comprise a step of formation of a mesoporous polymeric network within the concrete or other cementitious material, wherein the network further includes a cationic component that forms a substantially insoluble precipitate upon reaction with sulfuric acid to so form a composite barrier against further attack by sulfuric acid.
Abstract: Contemplated compositions and methods for sealing cementitious material includes the step of contacting a portion of the cementitious material with a concrete sealing composition, wherein the composition comprises swellable polymers that can form a moisture adaptive barrier in the material, a silicate component that can react with free lime in the material to form CSH in the presence of a catalyst, and a water miscible silane that can react with silica in the material to form polysiloxanes.
Abstract: Contemplated compositions and methods for protection of concrete and various other cementitious materials comprise a step of formation of a mesoporous polymeric network within the concrete or other cementitious material, wherein the network further includes a cationic component that forms a substantially insoluble precipitate upon reaction with sulfuric acid to so form a composite barrier against further attack by sulfuric acid.