Abstract: A method of measuring a rate of mineralization, including: positioning a seismic sensor and/or a harmonic sensor in acoustic communication with a rock formation; injecting carbon dioxide into a borehole in the rock formation; reacting the carbon dioxide with the rock formation to form mineralized carbon dioxide; measuring an acoustic activity generated in the rock formation with the seismic sensor and/or harmonic sensor during the reacting; calculating the rate of mineralization based on the acoustic activity; and adjusting a rate of carbon dioxide injection into the rock formation based on the calculated rate of mineralization.
Abstract: The present invention provides a system and method to mineralize CO2 into peridotite rocks in a controlled and efficient manner removing carbon permanently from the atmosphere. Carbon dioxide sequestration into peridotite rocks happens naturally by means of natural weathering. However, this process is so slow and might take thousands of years to transform considerable amount of CO2 into carbonate rocks. The present invention, however, shortens the time of mineralization considerably in a controlled and quantifiable manner. This is typically done by injecting CO2 into peridotite rock formation and creating an efficient reaction pathways and conditions for the mineralization reaction to happen and therefore store CO2 by conversion into magnesite (MgCO3) and calcite (CaCO3).
Abstract: The present invention discloses a novel process for the mineralization of CO2 in mafic and ultramafic rocks or storage of CO2 in geological formations through the generation and use of nano-sized CO2 bubbles injected into a fluid-mixture.
Abstract: The present invention discloses a novel process for the mineralization of CO2 in mafic and ultramafic rocks or storage of CO2 in geological formations through the generation and use of nano-sized CO2 bubbles injected into a fluid-mixture.
Abstract: The present invention provides a system and method to mineralize CO2 into peridotite rocks in a controlled and efficient manner removing carbon permanently from the atmosphere. Carbon dioxide sequestration into peridotite rocks happens naturally by means of natural weathering. However, this process is so slow and might take thousands of years to transform considerable amount of CO2 into carbonate rocks. The present invention, however, shortens the time of mineralization considerably in a controlled and quantifiable manner. This is typically done by injecting CO2 into peridotite rock formation and creating an efficient reaction pathways and conditions for the mineralization reaction to happen and therefore store CO2 by conversion into magnesite (MgCO3) and calcite (CaCO3).