Abstract: A stackable heat sink having a core shaft in heat-engaging relation with a semiconductor device and a plurality of individual thin fins having an opening for receiving the core shaft in press fit relation so that a plurality of the fins, when mounted on the shaft, define a plurality of air passageways and the fins and shaft efficiently transfer heat away from the semiconductor device and into the surrounding atmosphere. In an improved version of the heat sink, the heat-dissipating fins may be corrugated so as to increase the surface area of each individual fin without increasing its perimeter. A heat pipe may be used in conjunction with the core shaft or base of the heat sink so as to facilitate heat transfer away from the electronic component. An improved heat sink may also include a base having a plurality of openings and a small fan connected to the portion of the base with the openings, so as to direct air across and between adjacent fins.
Abstract: A heat sink retainer clip for attaching a heat sink to an electronic device and its housing such as a microprocessor module. The clip is comprised of flexible rails having slots that corresponding pins are inserted through. The pins are inserted vertically through registered openings in the heat sink and microprocessor module, and through corresponding holes in the retainer clip. Then the clip is expanded by a handle causing the pins to slide horizontally through the slots and lock into place because the size of the bulb at one end of the pin is larger than the width of the slot. Each pin also contains a spacer for maintaining a fixed distance between components of the microprocessor module and heat sink.
Abstract: A stackable heat sink having a core shaft in heat-engaging relation with a semiconductor device and a plurality of individual thin fins having an opening for receiving the core shaft in press fit relation so that a plurality of the fins, when mounted on the shaft, define a plurality of air passageways and the fins and shaft efficiently transfer heat away from the semiconductor device and into the surrounding atmosphere.
Abstract: A heat sink assembly comprises a heat sink and a retainer clip for attachment to an electronic package or semiconductor device so as to dissipate heat from such device. The heat sink may comprise a flat base with a plurality of upwardly extending fins. The fins will define at least one channel. The retainer clip includes two parts. One part is an elongated, resilient, metal strap that has holding means at each end for engaging a semiconductor socket, or a semiconductor module, so as to secure the retainer clip and heat sink to the device or module. The retainer clip also includes a cam-type latch which is pivotally positioned in the middle of the elongated strap and includes an arm and a cam. The cam has a bearing surface which is spaced from the axis of the elongated member a distance greater than the distance between the elongated member and the upper surface of the heat sink base when in the initially assembled position.