Abstract: A scanning system utilizing a scanner which is located in a case of size adapted to fit in the palm of the hand or to be attached to the hand along the top outside surface of the hand between the fingers and the wrist. The scanner includes a scan engine within the case mounted on a printed circuit board which scans symbols having data identifying characteristics, which are visible through a window in a side wall of the case. A switch for enabling scanning operations may be provided by a manually actuated trigger on the printed circuit board and an arm which is pivotally mounted on a post which aligns the scan engine in the case and is captured in an opening along a wall of the case. The scanner may be connected by a retractable cable to a retraction unit which can be carried by the operator. The system may be configured with the scanner on the outer side of the hand and held on the hand as by a strap or glove. A light weight arm unit is carried on the forearm.
Type:
Grant
Filed:
October 2, 1992
Date of Patent:
July 12, 1994
Assignee:
PSC, Inc.
Inventors:
L. Michael Hone, Vincent T. La Manna, Harold McGuire
Abstract: A system apparatus for altering the depth of field of a lens mechanism for use with a bar code. The altering of the mechanism allows different focal points and increased depths of field to be selected to accommodate different container sizes. The system is also designed to provide a variable threshold which adjusts the receiving circuitry based upon the amplitude of the signal received from the scanned label. Additionally, the system may be operated in a mode which introduces alternate threshold switching for allowing labels of low contrast bar and space elements to be successfully scanned along with elements of high contrast. Incorporated into the apparatus is a technique for adjusting the circuitry when there is a reduction of the power output of the beam generating laser.
Abstract: A bar code label is read by automatically initiated scanning of the bar code symbol by a beam of light, as from a laser in a bar code scanner. Initially, the scanner is operated in a pulsed mode with low duty cycle (5%) pulses. These pulses are reflected from a reflective tape on one side of a detection zone or from an object carrying the label in the beam path. Then (because the beam is not scanning across the code) the reflected pulses (which are detected much like the bars and spaces of the code) are not detected. The ratio of the number of generated pulses to the reflected pulses is computed for a succession of pulses (ten pulses for example). If this ratio exceeds two (i.e., that the number of effective bars is less than the number of generated pulses during the succession), then the presence of the object is detected and the system, implemented in an application program in the microprocessor controller of the bar code scanner, initiates scanning of the bar code.
Abstract: A portable bar code scanner system uses various interchangeable interface boards which allow the scanner system to be used with a plurality of different input/output devices (transaction terminals, computers, cash registers) having different operating characteristics. One of these boards is capable of accepting and transmitting digital character strings of various bit lengths to accommodate the operating characteristics of input/output devices using data in a string of predetermined bit length.
Abstract: A reflective deflector of a light beam which scans in opposite directions across a bar code is controlled in scan angle by monitoring the AC component of a current passing through a winding of a scanning motor which oscillates the deflector to scan the beam across the code over a scan angle. The inductance of the winding corresponds to the length of the scan angle and is measured in terms of the peak to peak value of the AC component during a scan period or frame which occurs over an interval corresponding to the reciprocal of the scan rate. During successive periods, successive trains of pulses are generated. The number of pulses or their duty cycle during each period is changed in accordance with an error signal corresponding to the difference between the desired scan angle and the peak to peak value of the AC component.
Abstract: A bar code label is ready by automatically initiated scanning of the bar code symbol by a scanner on a stand. Light is reflected back to the scanner as from the bars of a code being scanned. Initially, the scanner is operated in a pulsed mode with low duty cycle (5%) pulses. These pulses are reflected from a reflective area unless an object is inserted and blocks the beam path. Then (because the beam is not scanning across the code) the reflected pulses (which are detected much like the bars and spaces of the code) are not detected. The ratio of the number of generated pulses to the reflected pulses is computed for a succession of pulses. If this ratio exceeds two (i.e., that the number of effective bars is less than the number of generated pulses during the succession), then the presence of the object is detected. The system, implemented in an application program in the microprocessor controller of the bar code scanner, initiates scanning of the bar code.
Abstract: An optical bar code reading instrument has a uniport interface circuit which accepts through a common terminal both charging current for the reader's internal rechargeable battery and incoming digital electric information signals. The uniport interface also allows digital electrical signals produced by the instrument to pass through the same terminal.
Abstract: A hand-held instrument for reading a bar code symbol, and analyzing the print quality of the code upon manually scanning the code has a graphic display. The display is driven by a computer which has memory (a block in RAM) in which a multiplicity of data samples representing the reflectance profile of the bar code pattern are entered at a constant rate. The print quality analysis is based upon these samples. The number (count) of these samples represents the duration of the elements (bars and spaces) constituting the code. When the number of samples in successive, adjacent characters (groups of elements, a string of which represents a valid code) differs by 25%, the display is driven to prompt the operator to scan the code again, but more evenly without jerky motion (accelerations or decelerations). When the capacity of the memory block allocated to the scan profile data samples is exceeded, the operator is prompted by the display to scan faster.
Abstract: To increase the efficiency of personnel conducting inventory management operations, including data entry of products and information as to their absence, presence or location, the operator is provided with a glove having finger sheaths and a portion for the posterior or dorsal surface of the hand which covers that surface. A bar code reader is located in a housing on the cover and flexural strain gauge elements are located in the sheaths in the vicinity of the joints of the fingers. Signals from these elements are digitized and provide for manual data entry and also for commands to operate the bar code reader. The glove and the sensors constitute a portable transaction or data entry terminal which does not require manual actuation of a trigger to operate the bar code scanner or a keyboard for manual entry of data concerning the products to be managed.
Type:
Grant
Filed:
September 9, 1991
Date of Patent:
May 18, 1993
Assignee:
PSC, Inc.
Inventors:
Dusty L. Quick, Jay M. Eastman, John A. Boles
Abstract: A bar code scanner has a laser which produces a beam incident on a deflector, such as a polygon, which projects a scan beam out of the scanner so as to scan a bar code; light reflected or scattered from the code being detected so as to provide signals from which the bar code may be decoded. In order to insure that the scan beam is incident on the code, a bright oblong spot is provided by a second laser and a mirror which deflects the beam from the second laser along a path, generally paralleling the scan beam, through a cylindrical lens, and intersecting the scan beam approximately in the center of the scan on the code. The laser producing the aiming spot and the deflector drive circuits are initiated upon actuation of a trigger.
Type:
Grant
Filed:
March 1, 1991
Date of Patent:
May 18, 1993
Assignee:
PSC, Inc.
Inventors:
John A. Boles, Dean S. White, Randall K. Hems
Abstract: A system for converting analog bar code signals from the photo detector of a bar code reader or scanner into pulses occurring in time in correspondence with the spacing of the edges of the bars of the code which has a differentiator circuit and a circuit for integrating in time the differentiated signal to produce a second signal lower in amplitude and delayed with respect to the differentiated signal. A comparator compares the differentiated signal and the integrated signal. The output of the comparator is a train of pulses having edges occurring when the differentiated signal and integrated signal are in a certain amplitude relationship (i.e., approximately equal to each other). The peaks of the differentiated bar code signal occur in coincidence with the scanning of the edges of the bar code. The integrated signal is delayed by a fixed time delay.
Abstract: A headset to be worn around the head of an operator having a head-band, a microphone, a bar code reader, a display, electronics including a microprocessor and speech recognition for translating alphanumeric names and words into data which are to be stored in the memory of the microprocessor and a transceiver for exchanging data with a remotely located modem. Upon a voice activation, messages issued by the microprocessor are visually projected on a display and the reader is initiated.
Abstract: A unitary hand-held bar code scanner and reader produces an elliptical beam, oriented with its major axis along the direction of the bars, utilizing optics employing far field diffraction effects to shape the beam and maintain its elliptical aspect (length to width ratio) constant over a distance in front of the scanner were bar codes may be located. The optics eliminates parallax even though the photodetector and light source (preferably a laser diode) are located offset from each other on a board on which the optics are mounted. A housing assembly has channels which mount the board therein without shock absorbing devices. A digital microcomputer controller and peripheral devices regulate the optical power output from the laser diode and prevents catastrophic failure, if the electrical current through the laser diode exceeds safe limits.
Type:
Grant
Filed:
February 7, 1991
Date of Patent:
April 6, 1993
Assignee:
PSC, Inc.
Inventors:
Jay M. Eastman, Anna M. Quinn, Scott R. Grodevant, John A. Boles