Abstract: There is disclosed new topology for an Electronic Voltage Regulator (EVR) which can apply additive or subtractive (aka boost or buck) voltages to compensate for an increase or decrease in system voltages. This regulator employs a ladder of power capacitors which are in series and connected across the input voltage to apply different levels of voltages to a controlled or regulated transformer. Considering this, the proposed EVR can be utilized as a replacement for conventional electromechanical type on-load tap changers or (OLTCs) commonly used in power transformers, and meant to compensate voltage changes in a system. Electromechanical tap changers have some significant issues, such as defined time durations when switching to different taps, as determined by the spring-loaded mechanism's operation; a high malfunction rate due to mechanical switching when causing arcing, and thereby decreasing the operating lifetime of transformers.
Abstract: There is disclosed new topology for an Electronic Voltage Regulator (EVR) which can apply additive or subtractive (aka boost or buck) voltages to compensate for an increase or decrease in system voltages. This regulator employs a ladder of power capacitors which are in series and connected across the input voltage to apply different levels of voltages to a controlled or regulated transformer. Considering this, the proposed EVR can be utilized as a replacement for conventional electromechanical type on-load tap changers or (OLTCs) commonly used in power transformers, and meant to compensate voltage changes in a system. Electromechanical tap changers have some significant issues, such as defined time durations when switching to different taps, as determined by the spring-loaded mechanism's operation; a high malfunction rate due to mechanical switching when causing arcing, and thereby decreasing the operating lifetime of transformers.