Abstract: A shale pyrolysis system includes a retort with a first side and a second side. The second side is opposite the first side and the first side and the second side include descending angled surfaces at alternating angles to produce zig-zag motion of shale descending through the retort. Corners of the retort that change direction of the shale are rounded. The system includes steam distributors coupled to the first side and collectors coupled to the second side to produce crossflow of steam and heat across the descending shale from the first side to the second side, and a steam temperature control subsystem coupled to the steam distributors and configured to deliver higher-temperature steam to one or more upper sections of the retort and lower-temperature steam to one or more lower sections of the retort.
Abstract: Apparatuses, systems, and methods are disclosed for shale pyrolysis. A retort may include a first side and a second side opposite the first side, where the first side and the second side include descending angled surfaces at alternating angles to produce zig-zag motion of shale descending through the retort. Steam distributors may be coupled to the first side, with collectors coupled to the second side, to produce crossflow of steam and heat across the descending shale. A steam temperature control subsystem may be coupled to the steam distributors and may deliver higher-temperature steam to an upper portion of the retort and lower-temperature steam to a lower portion of the retort.
Abstract: Apparatuses, systems, and methods are disclosed for shale pyrolysis. A retort for shale pyrolysis may include a pyrolysis zone, a combustion zone, and a cool down zone. The pyrolysis zone may include one or more pyrolysis zone heat exchangers that transfer heat from a working fluid to shale for heating and pyrolyzing the shale. The combustion zone may include one or more injectors that inject oxygen to combust coke residue in the pyrolyzed shale. The cool down zone may include one or more cool down zone heat exchangers that cool the shale by transferring heat to the working fluid. In a further embodiment, the working fluid is circulated to heat the pyrolysis zone heat exchangers.