Patents Assigned to Q Bio, Inc
  • Patent number: 11872025
    Abstract: An apparatus for use in a magnetic resonance (MR) system for capturing an MR Elastography measurement of a biological lifeform may include a platform; a gel pad on a surface of the platform; and a sensor array. In some embodiments, the sensor array includes at least one ultrasound transducer, and at least one radiofrequency (RF) transmitter and receiver coil. The sensor array is at least partially embedded within the gel pad, and the gel pad is configured to provide mechanical impedance matching between the at least one ultrasound transducer and the biological lifeform. In some embodiments, a system includes the apparatus and an MR system, the MR system including an ultrasonic wave generator, an interface circuit, and a computing device. In some such embodiments, the ultrasonic wave generator is configured to generate one or more shear waves in the biological lifeform.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: January 16, 2024
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey H. Kaditz, Andrew G. Stevens
  • Patent number: 11748642
    Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: September 5, 2023
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
  • Patent number: 11650195
    Abstract: A system performs one or more magnetic resonance (MR) measurements on at least a portion of a biological life form. Moreover, the system quantitatively simulates an MR response of at least the portion of the biological life form, and compares the one or more MR measurements and the quantitative simulation to obtain a first test result. Next, the system determines one or more additional medical tests to perform. In response, the system accesses the biological sample in storage, and performs the one or more additional medical tests on at least a second portion of the biological sample to obtain one or more additional test results. Furthermore, the system computes a second test result based at least in part on the first test result and the one or more additional test results, where the second test result has an improved accuracy relative to the first test result.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: May 16, 2023
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Patent number: 11614509
    Abstract: During operation, a computer system may acquire magnetic resonance (MR) signals associated with a sample from a measurement device or memory. Then, the computer system may access a predetermined set of coil magnetic field basis vectors associated with a surface surrounding the sample, where coil sensitivities of coils in the measurement device are represented by weighted superpositions of the predetermined set of coil magnetic field basis vectors using coefficients, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer system may solve, on a voxel-by-voxel basis for voxels associated with the sample, a nonlinear optimization problem for MR information associated with the sample and the coefficients using: a forward model that uses the MR information as inputs and simulates response physics of the sample, the MR signals and the predetermined set of coil magnetic field basis vectors.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 28, 2023
    Assignee: Q Bio, Inc.
    Inventors: Matteo Alessandro Francavilla, Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
  • Patent number: 11614508
    Abstract: A computer system that performs a sparsity technique is described. During operation, the computer system accesses or obtains information associated with non-invasive measurements performed on at least an individual, historical non-invasive measurements, and a dictionary of predetermined features or basis functions associated with the historical non-invasive measurements. Note that the non-invasive measurements and the historical non-invasive measurements may include or correspond to magnetic resonance (MR) measurements. For example, the MR measurements may include magnetic resonance imaging (MRI) scans. Then, the computer system updates the dictionary of predetermined features based at least in part on the non-invasive measurements and the historical non-invasive measurements, where the updating includes performing a minimization technique with a cost function having an L2-norm term and an L0-norm term.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: March 28, 2023
    Assignee: Q Bio, Inc.
    Inventors: Guanhua Wang, Matteo Alessandro Francavilla, Thomas Witzel, Jeffrey H. Kaditz
  • Patent number: 11360166
    Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to one of an inverse model and a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: June 14, 2022
    Assignee: Q Bio, Inc
    Inventors: Doruk Tayli, Stamatios Lefkimmiatis, Athanasios Polymeridis
  • Patent number: 11354586
    Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 7, 2022
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
  • Patent number: 11131735
    Abstract: A computer that determines coefficients in a representation of coil sensitivities and MR information associated with a sample is described. During operation, the computer may acquire MR signals associated with a sample from the measurement device. Then, the computer may access a predetermined set of coil magnetic field basis vectors, where weighted superpositions of the predetermined set of coil magnetic field basis vectors using the coefficients represent coil sensitivities of coils in the measurement device, and where the predetermined coil magnetic field basis vectors are solutions to Maxwell's equations. Next, the computer may solve a nonlinear optimization problem for the MR information associated with the sample and the coefficients using the MR signals and the predetermined set of coil magnetic field basis vectors.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: September 28, 2021
    Assignee: Q Bio, Inc.
    Inventors: Jorge Fernandez Villena, Stamatios Lefkimmiatis, Athanasios Polymeridis, Doruk Tayli
  • Patent number: 11085984
    Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: August 10, 2021
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Villena
  • Patent number: 10964412
    Abstract: A computer system may iteratively modify a local medical rule that is based on an initial sub-population. In particular, after information specifying the local medical rule and sharing instructions are received from a user of the computer system, the computer system may iteratively apply the local medical rule to one or more additional sub-populations that are associated with other users of the computer system based on the sharing instructions without sharing PHI associated with the initial sub-population. Then, the computer system may aggregate results for the one or more additional sub-populations, and may generate the population-based medical rule by modifying the local medical rule based on the aggregated results and one or more quality metrics. Moreover, the computer system may selectively provide the population-based medical rule to the user without sharing PHI associated with the one or more additional sub-populations.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 30, 2021
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Patent number: 10936180
    Abstract: A user interface for medical information includes a timeline that can be highlighted or selected by a time window with a time duration, and the information plots of biomarkers displayed in subsystem displays can update to display the biomarker information for the time duration highlighted by the time window. The trendline, baseline, and data points shown on the information plot(s) can also be adjusted to display only information during the time duration highlighted or selected by the time window.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: March 2, 2021
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey H. Kaditz, Robert A. Novoa
  • Publication number: 20200264249
    Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to one of an inverse model and a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation, and the model parameters may include magnetic susceptibilities of the multiple voxels. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.
    Type: Application
    Filed: June 20, 2019
    Publication date: August 20, 2020
    Applicant: Q Bio, Inc
    Inventors: Doruk Tayli, Stamatis Lefkimmiatis, Athanasios Polymeridis
  • Publication number: 20200265328
    Abstract: A system may measure, using a measurement device, a response associated with a sample to an excitation. Then, the system may compute, using the measured response and the excitation as inputs to a predetermined predictive model, model parameters on a voxel-by-voxel basis in a forward model with multiple voxels that represent the sample. The forward model may simulate response physics occurring within the sample to a given excitation. For example, the forward model may be based on differential or phenomenological equations that approximates the response physics. Moreover, the system may determine an accuracy of the model parameters by comparing at least the measured response and a calculated predicted value of the response using the forward model, the model parameters and the excitation. When the accuracy exceeds a predefined value, the system may provide the model parameters as an output to: a user, another electronic device, a display, and/or a memory.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 20, 2020
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Jorge Fernandez Villena, Athanasios Polymeridis
  • Patent number: 10635833
    Abstract: A computer system may perform substitutions for fields in a set of records, where performing a given substitution involves replacing a field in the set of records with a replacement field, and the substitutions remove the context information in the set of records while maintaining relevance of the set of records. Then, the computer system may generate an artificial set of records based, at least in part, on the set of records, where a given artificial record includes one or more modified portions of the set of records. Next, the computer system may combine the set of records and the artificial set of records into a second set of records, where at least some phrases or values in the second set of records are uniformly distributed.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 28, 2020
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens, David Grijalva
  • Patent number: 10359486
    Abstract: During operation, a system may apply a polarizing field and an excitation sequence to a sample. Then, the system may measure a signal associated with the sample for a time duration that is less than a magnitude of a relaxation time associated with the sample. Next, the system may calculate the relaxation time based on a difference between the measured signal and a predicted signal of the sample, where the predicted signal is based on a forward model, the polarizing field and the excitation sequence. After modifying at least one of the polarizing field and the excitation sequence, the aforementioned operations may be repeated until a magnitude of the difference is less than a convergence criterion. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform on the measured signal.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 23, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena, Deepak Ramaswamy, Jacob White
  • Publication number: 20190154783
    Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 23, 2019
    Applicant: Q Bio, Inc
    Inventors: Jeffrey H. Kaditz, Athanasios Polymeridis, Jorge Villena
  • Publication number: 20190104963
    Abstract: An apparatus for use in a magnetic resonance (MR) system for capturing an MR Elastography measurement of a biological lifeform may include a platform; a gel pad on a surface of the platform; and a sensor array. In some embodiments, the sensor array includes at least one ultrasound transducer, and at least one radiofrequency (RF) transmitter and receiver coil. The sensor array is at least partially embedded within the gel pad, and the gel pad is configured to provide mechanical impedance matching between the at least one ultrasound transducer and the biological lifeform. In some embodiments, a system includes the apparatus and an MR system, the MR system including an ultrasonic wave generator, an interface circuit, and a computing device. In some such embodiments, the ultrasonic wave generator is configured to generate one or more shear waves in the biological lifeform.
    Type: Application
    Filed: March 17, 2017
    Publication date: April 11, 2019
    Applicant: Q Bio, Inc
    Inventors: Jeffrey H. Kaditz, Andrew G. Stevens
  • Patent number: 10222441
    Abstract: During operation, a system may apply an external magnetic field and an RF pulse sequence to a sample. Then, the system may measure at least a component of a magnetization associated with the sample, such as MR signals of one or more types of nuclei in the sample. Moreover, the system may calculate at least a predicted component of the magnetization for voxels associated with the sample based on the measured component of the magnetization, a forward model, the external magnetic field and the RF pulse sequence. Next, the system may solve an inverse problem by iteratively modifying the parameters associated with the voxels in the forward model until a difference between the predicted component of the magnetization and the measured component of the magnetization is less than a predefined value. Note that the calculations may be performed concurrently with the measurements and may not involve performing a Fourier transform.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: March 5, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Athanasios Polymeridis, Jorge Fernandez Villena
  • Patent number: 10194829
    Abstract: During operation, a system iteratively captures MR signals of one or more types of nuclei in one or more portions of a biological lifeform based on scanning instructions that correspond to a dynamic scan plan. The MR signals in a given iteration may be associated with voxels having associated sizes at three-dimensional (3D) positions in at least a corresponding portion of the biological lifeform. If the system detects a potential anomaly when analyzing the MR signals from the given iteration, the system dynamically modifies the scan plan based on the detected potential anomaly, a medical history and/or an MR-scan history. Subsequent measurements of MR signals may be associated with the same or different: types of nuclei, portions of the biological lifeform, voxels sizes and/or 3D positions.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: February 5, 2019
    Assignee: Q Bio, Inc.
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens
  • Publication number: 20190025280
    Abstract: A system performs one or more magnetic resonance (MR) measurements on at least a portion of a biological life form. Moreover, the system quantitatively simulates an MR response of at least the portion of the biological life form, and compares the one or more MR measurements and the quantitative simulation to obtain a first test result. Next, the system determines one or more additional medical tests to perform. In response, the system accesses the biological sample in storage, and performs the one or more additional medical tests on at least a second portion of the biological sample to obtain one or more additional test results. Furthermore, the system computes a second test result based at least in part on the first test result and the one or more additional test results, where the second test result has an improved accuracy relative to the first test result.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Q Bio, Inc
    Inventors: Jeffrey Howard Kaditz, Andrew Gettings Stevens